当前位置: X-MOL 学术Nat. Synth. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical oxidative C(sp3)–H cross-coupling with hydrogen evolution
Nature Synthesis Pub Date : 2023-02-16 , DOI: 10.1038/s44160-022-00221-2
Zhaoliang Yang , Wenyan Shi , Hesham Alhumade , Hong Yi , Aiwen Lei

Oxidative C(sp3)–H bond functionalization is a powerful tool in organic synthesis, but the stoichiometric oxidants required for bond formation raise environmental concerns. Electrochemical synthesis is typically carried out under environmentally benign conditions and hence is increasingly used in organic reactions. Recent advances revealed that electrochemical oxidative cross-coupling reactions employing either free radicals or carbocations can be conducted in the absence of external oxidants. In this Review, we outline the electrochemical oxidative C(sp3)–H cross-coupling to C(sp3)–C(X) (X = N, O, S, P, F, I and Br) bonds with hydrogen evolution under external oxidant-free conditions. Two commonly used electrochemical methods, namely direct and indirect oxidation electrolysis, are discussed for C(sp3)–H activation. The outline of electrochemical oxidative C(sp3)–H cross-coupling is organized based on the reactive intermediates (C(sp3)–M, a C(sp3) radical or a C(sp3) cation). Electrochemical asymmetric C(sp3)–H cross-coupling and late-stage functionalization of C(sp3)–H bonds in complex molecules are included to demonstrate the utility. Future perspectives for the development of electrochemical C(sp3)–H bond functionalization are proposed.



中文翻译:

电化学氧化 C(sp3)–H 交叉偶联与析氢

氧化性 C( sp 3 )–H 键功能化是有机合成中的有力工具,但键形成所需的化学计量氧化剂引起了环境问题。电化学合成通常在环境友好的条件下进行,因此越来越多地用于有机反应。最近的进展表明,在没有外部氧化剂的情况下,可以进行采用自由基或碳阳离子的电化学氧化交叉偶联反应。在本综述中,我们概述了电化学氧化 C( sp 3 )–H 与 C( sp 3的交叉偶联)–C(X)(X = N、O、S、P、F、I 和 Br)在无外部氧化剂的条件下与析氢键结合。讨论了用于 C( sp 3 )–H 活化的两种常用电化学方法,即直接和间接氧化电解。电化学氧化 C( sp 3 )–H 交叉偶联的概述是根据反应性中间体(C( sp 3 )–M、C( sp 3 ) 自由基或 C( sp 3 ) 阳离子)组织的。电化学不对称 C( sp 3 )–H 交叉偶联和 C( sp 3 ) 的后期功能化)–复杂分子中的 H 键被包括在内以证明其实用性。提出了电化学 C( sp 3 )–H 键功能化发展的未来前景。

更新日期:2023-02-16
down
wechat
bug