当前位置: X-MOL 学术Int. J. CARS › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intraoperative laparoscopic liver surface registration with preoperative CT using mixing features and overlapping region masks
International Journal of Computer Assisted Radiology and Surgery ( IF 2.3 ) Pub Date : 2023-02-14 , DOI: 10.1007/s11548-023-02846-w
Peidong Guan 1, 2 , Huoling Luo 1 , Jianxi Guo 3 , Yanfang Zhang 3 , Fucang Jia 1, 2, 4
Affiliation  

Purpose

Laparoscopic liver resection is a minimal invasive surgery. Augmented reality can map preoperative anatomy information extracted from computed tomography to the intraoperative liver surface reconstructed from stereo 3D laparoscopy. However, liver surface registration is particularly challenging as the intraoperative surface is only partially visible and suffers from large liver deformations due to pneumoperitoneum. This study proposes a deep learning-based robust point cloud registration network.

Methods

This study proposed a low overlap liver surface registration algorithm combining local mixed features and global features of point clouds. A learned overlap mask is used to filter the non-overlapping region of the point cloud, and a network is used to predict the overlapping region threshold to regulate the training process.

Results

We validated the algorithm on the DePoLL (the Deformable Porcine Laparoscopic Liver) dataset. Compared with the baseline method and other state-of-the-art registration methods, our method achieves minimum target registration error (TRE) of 19.9 ± 2.7 mm.

Conclusion

The proposed point cloud registration method uses the learned overlapping mask to filter the non-overlapping areas in the point cloud, then the extracted overlapping area point cloud is registered according to the mixed features and global features, and this method is robust and efficient in low-overlap liver surface registration.



中文翻译:

使用混合特征和重叠区域掩模与术前 CT 进行术中腹腔镜肝脏表面配准

目的

腹腔镜肝切除术是一种微创手术。增强现实可以将从计算机断层扫描中提取的术前解剖信息映射到通过立体 3D 腹腔镜重建的术中肝脏表面。然而,肝脏表面配准特别具有挑战性,因为术中表面仅部分可见,并且由于气腹而遭受较大的肝脏变形。本研究提出了一种基于深度学习的鲁棒点云配准网络。

方法

本研究提出了一种结合点云局部混合特征和全局特征的低重叠肝脏表面配准算法。使用学习到的重叠掩模来过滤点云的非重叠区域,并使用网络来预测重叠区域阈值以调节训练过程。

结果

我们在 DePoLL(可变形猪腹腔镜肝脏)数据集上验证了该算法。与基线方法和其他最先进的配准方法相比,我们的方法实现了 19.9 ± 2.7 mm 的最小目标配准误差 (TRE)。

结论

所提出的点云配准方法使用学习到的重叠掩模来过滤点云中的非重叠区域,然后根据混合特征和全局特征对提取的重叠区域点云进行配准,该方法在低功耗中具有鲁棒性和高效性。 -重叠肝脏表面配准。

更新日期:2023-02-15
down
wechat
bug