Nature Communications ( IF 14.7 ) Pub Date : 2023-02-14 , DOI: 10.1038/s41467-023-36544-7 Jiacheng Miao 1 , Hanmin Guo 2 , Gefei Song 1 , Zijie Zhao 1 , Lin Hou 2, 3 , Qiongshi Lu 1, 4, 5
Polygenic risk scores (PRS) calculated from genome-wide association studies (GWAS) of Europeans are known to have substantially reduced predictive accuracy in non-European populations, limiting their clinical utility and raising concerns about health disparities across ancestral populations. Here, we introduce a statistical framework named X-Wing to improve predictive performance in ancestrally diverse populations. X-Wing quantifies local genetic correlations for complex traits between populations, employs an annotation-dependent estimation procedure to amplify correlated genetic effects between populations, and combines multiple population-specific PRS into a unified score with GWAS summary statistics alone as input. Through extensive benchmarking, we demonstrate that X-Wing pinpoints portable genetic effects and substantially improves PRS performance in non-European populations, showing 14.1%–119.1% relative gain in predictive R2 compared to state-of-the-art methods based on GWAS summary statistics. Overall, X-Wing addresses critical limitations in existing approaches and may have broad applications in cross-population polygenic risk prediction.
中文翻译:
利用 GWAS 摘要统计量化便携式遗传效应并改进跨祖先遗传预测
据了解,根据欧洲人全基因组关联研究 (GWAS) 计算得出的多基因风险评分 (PRS) 在非欧洲人群中的预测准确性大大降低,限制了其临床效用,并引发了对祖先人群健康差异的担忧。在这里,我们引入了一个名为 X-Wing 的统计框架,以提高祖先多样化人群的预测性能。 X-Wing 量化种群之间复杂性状的局部遗传相关性,采用依赖于注释的估计程序来放大种群之间的相关遗传效应,并将多个种群特定的 PRS 组合成一个统一的分数,仅使用 GWAS 汇总统计数据作为输入。通过广泛的基准测试,我们证明 X-Wing 精确定位了可移植遗传效应,并显着提高了非欧洲人群中的 PRS 性能,与基于 GWAS 的最先进方法相比,预测 R 2的相对增益为 14.1%–119.1%汇总统计。总体而言,X-Wing 解决了现有方法的关键局限性,并且可能在跨群体多基因风险预测方面具有广泛的应用。