天然材料的结构变化提高了它们的性能。因此,通过自组装来精确调控纳米材料的结构和性能是一个备受关注的课题。在这里,通过金和 GlcA 的顺序沉积,在柔性碳布 (SA-AuNFs@GlcA/CC) 上自组装了葡萄糖醛酸 (GlcA) 涂层的 Au 纳米花 (NFs),用于非酶电化学葡萄糖检测。SA-AuNFs@GlcA/CC 比没有 GlcA 表面沉积的普通 AuNFs/CC 表现出更多暴露的纳米边缘,这可能会改变葡萄糖电催化中 GlcA 的刻板传统负假设。值得注意的是,在 SA-AuNFs@GlcA/CC 中发现了氨基接枝-CC 顶部 Au 的独特 {110} 面,显着提高了传感器的催化性能。通过扫描电子显微镜、透射电子显微镜和其他电化学表征工具系统地评估了 SA-AuNFs@GlcA 的高度暴露的纳米边缘和独特的 {110} 面。SA-AuNFs@GlcA/CC在葡萄糖检测中表现出优异的性能,包括线性范围宽(5 μM-42 mM)、检测限低(5 μM,S/N = 3)、检测选择性高、稳定性好, 和繁殖力。该传感器成功地实时检测了人体汗液样本和饮料中的葡萄糖。因此,这种简单且绿色的制造方法可以用作生物和食品样品中葡萄糖监测的新策略。SA-AuNFs@GlcA/CC在葡萄糖检测中表现出优异的性能,包括线性范围宽(5 μM-42 mM)、检测限低(5 μM,S/N = 3)、检测选择性高、稳定性好, 和繁殖力。该传感器成功地实时检测了人体汗液样本和饮料中的葡萄糖。因此,这种简单且绿色的制造方法可以用作生物和食品样品中葡萄糖监测的新策略。SA-AuNFs@GlcA/CC在葡萄糖检测中表现出优异的性能,包括线性范围宽(5 μM-42 mM)、检测限低(5 μM,S/N = 3)、检测选择性高、稳定性好, 和繁殖力。该传感器成功地实时检测了人体汗液样本和饮料中的葡萄糖。因此,这种简单且绿色的制造方法可以用作生物和食品样品中葡萄糖监测的新策略。
"点击查看英文标题和摘要"
Effect of glucuronic acid on inducing self-assembly of Au nanoflowers@glucuronic acid on carbon cloth for non-enzymatic glucose sensing
Natural materials' structural variation boosts their performance. Therefore, the precise manipulation of the structure and properties of nanomaterials by self-assembly is a topic of great interest. Here, a self-assembly of glucuronic acid (GlcA)-coated Au nanoflowers (NFs) on flexible carbon cloth (SA-AuNFs@GlcA/CC) for non-enzyme electrochemical glucose detection was fabricated through the sequential deposition of gold and GlcA. The SA-AuNFs@GlcA/CC exhibits more highly exposed nanoedges than the normal AuNFs/CC without GlcA surface deposition, which may change the stereotyped traditional negative hypotheses of GlcA in glucose electrocatalysis. Notably, the unique {110} facets of Au atop the amino group grafted-CC were found in the SA-AuNFs@GlcA/CC, significantly improving the sensor's catalytic performance. The highly exposed nanoedges and unique {110} facets of SA-AuNFs@GlcA were systematically evaluated by scanning electron microscopy, transmission electron microscopy, and other electrochemical characterization tools. The SA-AuNFs@GlcA/CC exhibits excellent performance in glucose detection, including a wide linear range (5 μM-42 mM), a low limit of detection (5 μM, S/N = 3), high detection selectivity, good stability, and reproductivity. The sensor successfully detected glucose in human sweat samples and beverages in real time. Thus, this simple and green manufacturing method could be used as a novel strategy for glucose monitoring in biological and food samples.