各种处理对微污染物的降解通常受到水环境中无处不在的溶解性有机物(DOM)的影响。为了优化操作条件和分解效率,有必要考虑DOM的影响。DOM 在不同的处理中表现出不同的行为,包括高锰酸盐氧化、太阳能/紫外线光解、高级氧化过程、高级还原过程和酶生物处理。此外,DOM 的不同来源(即陆地和水生等)和操作环境(即浓度和 pH 值)会导致水中微污染物的不同转化效率波动。然而,迄今为止,对相关研究和机制的系统解释和总结还很少见。本文综述了DOM在微污染物消除中的“权衡”表现和相应机制,总结了DOM在上述各处理中双重作用的异同。抑制机制通常包括自由基清除、紫外线衰减、竞争效应、酶失活、DOM 与微污染物之间的反应以及中间体减少。促进机制包括活性物质的产生、络合/稳定、与污染物的交叉偶联和电子穿梭。此外,DOM中的吸电子基团(即醌类、酮类官能团)和供电子基团(即酚类)是其权衡效应的主要贡献者。并总结了 DOM 在上述每种处理中的双重作用的异同。抑制机制通常包括自由基清除、紫外线衰减、竞争效应、酶失活、DOM 与微污染物之间的反应以及中间体减少。促进机制包括活性物质的产生、络合/稳定、与污染物的交叉偶联和电子穿梭。此外,DOM中的吸电子基团(即醌类、酮类官能团)和供电子基团(即酚类)是其权衡效应的主要贡献者。并总结了 DOM 在上述每种处理中的双重作用的异同。抑制机制通常包括自由基清除、紫外线衰减、竞争效应、酶失活、DOM 与微污染物之间的反应以及中间体减少。促进机制包括活性物质的产生、络合/稳定、与污染物的交叉偶联和电子穿梭。此外,DOM中的吸电子基团(即醌类、酮类官能团)和供电子基团(即酚类)是其权衡效应的主要贡献者。DOM 与微污染物之间的反应,以及中间体的还原。促进机制包括活性物质的产生、络合/稳定、与污染物的交叉偶联和电子穿梭。此外,DOM中的吸电子基团(即醌类、酮类官能团)和供电子基团(即酚类)是其权衡效应的主要贡献者。DOM 与微污染物之间的反应,以及中间体的还原。促进机制包括活性物质的产生、络合/稳定、与污染物的交叉偶联和电子穿梭。此外,DOM中的吸电子基团(即醌类、酮类官能团)和供电子基团(即酚类)是其权衡效应的主要贡献者。
"点击查看英文标题和摘要"
Trade-off effect of dissolved organic matter on degradation and transformation of micropollutants: A review in water decontamination
The degradation of micropollutants by various treatments is commonly affected by the ubiquitous dissolved organic matter (DOM) in the water environment. To optimize the operating conditions and decomposition efficiency, it is necessary to consider the impacts of DOM. DOM exhibits varied behaviors in diverse treatments, including permanganate oxidation, solar/ultraviolet photolysis, advanced oxidation processes, advanced reduction process, and enzyme biological treatments. Besides, the different sources (i.e., terrestrial and aquatic, etc) of DOM, and operational circumstances (i.e., concentration and pH) fluctuate different transformation efficiency of micropollutants in water. However, so far, systematic explanations and summaries of relevant research and mechanism are rare. This paper reviewed the “trade-off” performances and the corresponding mechanisms of DOM in the elimination of micropollutants, and summarized the similarities and differences for the dual roles of DOM in each of the aforementioned treatments. Inhibition mechanisms typically include radical scavenging, UV attenuation, competition effect, enzyme inactivation, reaction between DOM and micropollutants, and intermediates reduction. Facilitation mechanisms include the generation of reactive species, complexation/stabilization, cross-coupling with pollutants, and electron shuttle. Moreover, electron-drawing groups (i.e., quinones, ketones functional groups) and electron-supplying groups (i.e., phenols) in the DOM are the main contributors to its trade-off effect.