Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rhenium Suppresses Iridium (IV) Oxide Crystallization and Enables Efficient, Stable Electrochemical Water Oxidation
Small ( IF 13.0 ) Pub Date : 2023-02-11 , DOI: 10.1002/smll.202207847 Wenjing Huo 1 , Xuemei Zhou 1 , Yuwei Jin 1 , Canquan Xie 1 , Shuo Yang 2 , Jinjie Qian 1 , Dong Cai 1 , Yongjie Ge 1 , Yongquan Qu 3 , Huagui Nie 1 , Zhi Yang 1
Small ( IF 13.0 ) Pub Date : 2023-02-11 , DOI: 10.1002/smll.202207847 Wenjing Huo 1 , Xuemei Zhou 1 , Yuwei Jin 1 , Canquan Xie 1 , Shuo Yang 2 , Jinjie Qian 1 , Dong Cai 1 , Yongjie Ge 1 , Yongquan Qu 3 , Huagui Nie 1 , Zhi Yang 1
Affiliation
IrO2 as benchmark electrocatalyst for acidic oxygen evolution reaction (OER) suffers from its low activity and poor stability. Modulating the coordination environment of IrO2 by chemical doping is a methodology to suppress Ir dissolution and tailor adsorption behavior of active oxygen intermediates on interfacial Ir sites. Herein, the Re-doped IrO2 with low crystallinity is rationally designed as highly active and robust electrocatalysts for acidic OER. Theoretical calculations suggest that the similar ionic sizes of Ir and Re impart large spontaneous substitution energy and successfully incorporate Re into the IrO2 lattice. Re-doped IrO2 exhibits a much larger migration energy from IrO2 surface (0.96 eV) than other dopants (Ni, Cu, and Zn), indicating strong confinement of Re within the IrO2 lattice for suppressing Ir dissolution. The optimal catalysts (Re: 10 at%) exhibit a low overpotential of 255 mV at 10 mA cm−2 and a high stability of 170 h for acidic OER. The comprehensive mechanism investigations demonstrate that the unique structural arrangement of the Ir active sites with Re-dopant imparts high performance of catalysts by minimizing Ir dissolution, facilitating *OH adsorption and *OOH deprotonation, and lowering kinetic barrier during OER. This study provides a methodology for designing highly-performed catalysts for energy conversion.
中文翻译:
铼抑制铱 (IV) 氧化物结晶并实现高效、稳定的电化学水氧化
IrO 2作为酸性析氧反应(OER)的基准电催化剂存在活性低和稳定性差的问题。通过化学掺杂调节 IrO 2的配位环境是一种抑制 Ir 溶解和调整活性氧中间体在 Ir 界面位点上的吸附行为的方法。在此,具有低结晶度的 Re 掺杂 IrO 2被合理设计为用于酸性 OER 的高活性和稳健的电催化剂。理论计算表明,相似的离子尺寸的 Ir 和 Re 赋予大的自发取代能,并成功地将 Re 并入 IrO 2晶格。重新掺杂的 IrO 2表现出比 IrO 2大得多的迁移能表面 (0.96 eV) 高于其他掺杂剂(Ni、Cu 和 Zn),表明 Re 强烈限制在 IrO 2晶格内以抑制 Ir 溶解。最佳催化剂(Re:10 at%)在 10 mA cm -2下表现出 255 mV 的低过电势和酸性 OER 的 170 h 的高稳定性。全面的机理研究表明,带有再掺杂剂的 Ir 活性位点的独特结构排列通过最大限度地减少 Ir 溶解、促进 *OH 吸附和 *OOH 去质子化以及降低 OER 过程中的动力学势垒来赋予催化剂高性能。本研究提供了一种设计用于能量转换的高性能催化剂的方法。
更新日期:2023-02-11
中文翻译:
铼抑制铱 (IV) 氧化物结晶并实现高效、稳定的电化学水氧化
IrO 2作为酸性析氧反应(OER)的基准电催化剂存在活性低和稳定性差的问题。通过化学掺杂调节 IrO 2的配位环境是一种抑制 Ir 溶解和调整活性氧中间体在 Ir 界面位点上的吸附行为的方法。在此,具有低结晶度的 Re 掺杂 IrO 2被合理设计为用于酸性 OER 的高活性和稳健的电催化剂。理论计算表明,相似的离子尺寸的 Ir 和 Re 赋予大的自发取代能,并成功地将 Re 并入 IrO 2晶格。重新掺杂的 IrO 2表现出比 IrO 2大得多的迁移能表面 (0.96 eV) 高于其他掺杂剂(Ni、Cu 和 Zn),表明 Re 强烈限制在 IrO 2晶格内以抑制 Ir 溶解。最佳催化剂(Re:10 at%)在 10 mA cm -2下表现出 255 mV 的低过电势和酸性 OER 的 170 h 的高稳定性。全面的机理研究表明,带有再掺杂剂的 Ir 活性位点的独特结构排列通过最大限度地减少 Ir 溶解、促进 *OH 吸附和 *OOH 去质子化以及降低 OER 过程中的动力学势垒来赋予催化剂高性能。本研究提供了一种设计用于能量转换的高性能催化剂的方法。