制造电子产品的当前趋势将数字喷墨打印作为一项关键技术,以实现定制和微型功能设备的生产。然而,电气设备性能取决于印刷轨道形态的准确性和均匀性,这在当前应用中提出了重大的质量挑战。已经使用计算量大的基于物理的模拟开发了一些预测印刷特征形态的研究,但很少有人关注适合快速生产条件的降阶模型。在这里,我们提出了一个替代建模框架,以改善由微滴在无孔基板上的顺序沉积产生的喷墨打印轨道形态。假设由三丙二醇二丙烯酸酯 (TPGDA) 制成的 UV 固化介电油墨的物理特性,根据经过验证的格子玻尔兹曼模拟构建的一组响应面方程预测轨道形态作为液滴间距和接触角滞后的函数,并带有误差百分比小于 10%。此外,代理模型能够捕获实验中观察到的瞬态效应并在几秒钟内构建轨道形态,从而实现印刷和润湿参数的有效优化。所提出技术的简单性使其成为模型驱动喷墨印刷工艺优化的有前途的工具,包括实时过程控制,并为印刷电子行业中质量更高的设备铺平了道路。根据经过验证的格子玻尔兹曼模拟构建的一组响应面方程预测轨道形态作为液滴间距和接触角滞后的函数,误差百分比小于 10%。此外,代理模型能够捕获实验中观察到的瞬态效应并在几秒钟内构建轨道形态,从而实现印刷和润湿参数的有效优化。所提出技术的简单性使其成为模型驱动喷墨印刷工艺优化的有前途的工具,包括实时过程控制,并为印刷电子行业中质量更高的设备铺平了道路。根据经过验证的格子玻尔兹曼模拟构建的一组响应面方程预测轨道形态作为液滴间距和接触角滞后的函数,误差百分比小于 10%。此外,代理模型能够捕获实验中观察到的瞬态效应并在几秒钟内构建轨道形态,从而实现印刷和润湿参数的有效优化。所提出技术的简单性使其成为模型驱动喷墨印刷工艺优化的有前途的工具,包括实时过程控制,并为印刷电子行业中质量更高的设备铺平了道路。代理模型能够捕捉实验中观察到的瞬态效应,并在几秒钟内构建轨道形态,从而有效优化印刷和润湿参数。所提出技术的简单性使其成为模型驱动喷墨印刷工艺优化的有前途的工具,包括实时过程控制,并为印刷电子行业中质量更高的设备铺平了道路。代理模型能够捕捉实验中观察到的瞬态效应,并在几秒钟内构建轨道形态,从而有效优化印刷和润湿参数。所提出技术的简单性使其成为模型驱动喷墨印刷工艺优化的有前途的工具,包括实时过程控制,并为印刷电子行业中质量更高的设备铺平了道路。
"点击查看英文标题和摘要"
A surrogate modelling strategy to improve the surface morphology quality of inkjet printing applications
Current trends in manufacturing electronics feature digital inkjet printing as a key technology to enable the production of customised and microscale functional devices. However, electrical device performance depends on the accuracy and uniformity of the printed-track morphology, which presents significant quality challenges in current applications. Several studies to predict the morphology of printed features have been developed using computationally expensive physics-based simulations, but little attention has been paid to reduced order models suitable for fast production conditions. Here we propose a surrogate modelling framework to improve the inkjet-printed track morphology created by the sequential deposition of microdroplets on non-porous substrates. Assuming physical properties of a UV-curable dielectric ink made from tripropylene glycol diacrylate (TPGDA), a set of response surface equations built from a validated lattice Boltzmann simulation predict the track morphology as a function of drop spacing and contact angle hysteresis with an error percentage less than 10 %. Furthermore, the surrogate model is able to capture transient effects observed in experiments and builds track morphology in seconds, enabling efficient optimisation of printing and wetting parameters. The simplicity of the proposed technique makes it a promising tool for model driven inkjet printing process optimization, including real time process control and paves the way for better quality devices in the printed electronics industry.