当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Up-shifting the desalination rate limit of capacitive deionization via integrating chloride-capturing Bi nanocluster with flow-through cell architecture
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-02-06 , DOI: 10.1016/j.cej.2023.141726
Lihao Wang , Zizhen Liu , Ziping Wang , Qianhui Ma , Zixin Guo , Genzhe Shen , Kai Wang , Xingtao Xu , Yong Liu , Xun Yuan

Faradic electrode-directed capacitive deionization (faradic-based CDI) as a green and eco-friendly technique is particularly promising in addressing the freshwater crisis, but its practical applications are plagued by the sluggish desalination kinetic. After deciphering its dynamic desalination process, two rate-determine steps (RDS) are identified, i.e., the ion diffusion inside the faradic electrode (RDS #1) and mass transfer process in the electrolyte (RDS #2). Therefore, we propose a synergetic strategy to upshift the desalination rate limit of faradic-based CDI through the integration of delicate material design with rational cell architecture. Specifically, deploying ultrasmall Bi nanoclusters impregnated carbon nanofibers (Bi NCs@CNF) as chloride-capturing electrodes and constructing a flow-through CDI (FT-CDI) system to accelerate the diffusion process (RDS #1) and shorten the mass transfer pathway (RDS #2), respectively. As expected, Bi NCs@CNF-based FT-CDI performs super-fast desalinization (0.56 mg g−1 s−1) and excellent cyclic stability. Taken together, our study opens an avenue in upshifting the desalination kinetics of faradic-based CDI based on the joint power of both “material design” and “cell architecture”, which may motivate the development of highly-efficient desalination systems.



中文翻译:

通过将捕获氯离子的 Bi 纳米团簇与流通池架构相结合,提高电容去离子的脱盐速率极限

法拉第电极定向电容去离子(基于法拉第的 CDI)作为一种绿色环保技术在解决淡水危机方面特别有前途,但其实际应用受到海水淡化动力学缓慢的困扰。在破译其动态脱盐过程后,确定了两个速率确定步骤(RDS),,法拉第电极内的离子扩散 (RDS #1) 和电解质中的传质过程 (RDS #2)。因此,我们提出了一种协同策略,通过将精细的材料设计与合理的电池结构相结合,提高基于法拉第的 CDI 的脱盐率极限。具体而言,部署超小型 Bi 纳米团簇浸渍碳纳米纤维 (Bi NCs@CNF) 作为氯化物捕获电极并构建流通式 CDI (FT-CDI) 系统以加速扩散过程 (RDS #1) 并缩短传质路径 ( RDS #2),分别。正如预期的那样,基于 Bi NCs@CNF 的 FT-CDI 进行超快速脱盐(0.56 mg g -1 s -1) 和优异的循环稳定性。综上所述,我们的研究开辟了一条基于“材料设计”和“电池结构”的联合力量提升基于法拉第 CDI 的脱盐动力学的途径,这可能会推动高效脱盐系统的发展。

更新日期:2023-02-09
down
wechat
bug