当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Weak CO binding sites induced by Cu–Ag interfaces promote CO electroreduction to multi-carbon liquid products
Nature Communications ( IF 14.7 ) Pub Date : 2023-02-08 , DOI: 10.1038/s41467-023-36411-5
Jing Li 1 , Haocheng Xiong 1, 2 , Xiaozhi Liu 3 , Donghuan Wu 1 , Dong Su 3 , Bingjun Xu 2 , Qi Lu 1
Affiliation  

Electrochemical reduction of carbon monoxide to high-value multi-carbon (C2+) products offers an appealing route to store sustainable energy and make use of the chief greenhouse gas leading to climate change, i.e., CO2. Among potential products, C2+ liquid products such as ethanol are of particular interest owing to their high energy density and industrial relevance. In this work, we demonstrate that Ag-modified oxide-derive Cu catalysts prepared via high-energy ball milling exhibit near 80% Faradaic efficiencies for C2+ liquid products at commercially relevant current densities (>100 mA cm−2) in the CO electroreduction in a microfluidic flow cell. Such performance is retained in an over 100-hour electrolysis in a 100 cm2 membrane electrode assembly (MEA) electrolyzer. A method based on surface-enhanced infrared absorption spectroscopy is developed to characterize the CO binding strength on the catalyst surface. The lower C and O affinities of the Cu–Ag interfacial sites in the prepared catalysts are proposed to be responsible for the enhanced selectivity for C2+ oxygenates, which is the experimental verification of recent computational predictions.



中文翻译:

由 Cu-Ag 界面诱导的弱 CO 结合位点促进 CO 电还原为多碳液体产品

将一氧化碳电化学还原为高价值的多碳 (C 2+ ) 产品,为储存可持续能源和利用导致气候变化的主要温室气体(即 CO 2 )提供了一条极具吸引力的途径。在潜在产品中,C 2+液体产品(例如乙醇)因其高能量密度和工业相关性而受到特别关注。在这项工作中,我们证明了通过高能球磨制备的 Ag 改性氧化物衍生 Cu 催化剂在商业相关电流密度(>100 mA cm -2)下对 C 2+液体产品表现出接近 80% 的法拉第效率) 在微流体流动池中的 CO 电还原中。这种性能在 100 cm 2膜电极组件 (MEA) 电解槽中经过 100 多个小时的电解后仍保持不变。开发了一种基于表面增强红外吸收光谱的方法来表征催化剂表面的 CO 结合强度。所制备催化剂中 Cu-Ag 界面位点较低的 C 和 O 亲和力被认为是提高 C 2+含氧化合物选择性的原因,这是最近计算预测的实验验证。

更新日期:2023-02-09
down
wechat
bug