当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Trifunctional Microgel-Mediated Preparation and Toughening of Printable High-Performance Chitosan Hydrogels for Underwater Communications
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-02-08 , DOI: 10.1021/acsami.3c00195 Baokang Wang 1 , Jupen Liu 1 , Ping Zhang 1 , Hongqiu Wei 1 , You Yu 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-02-08 , DOI: 10.1021/acsami.3c00195 Baokang Wang 1 , Jupen Liu 1 , Ping Zhang 1 , Hongqiu Wei 1 , You Yu 1
Affiliation
Natural and biocompatible chitosan has demonstrated wide applications. However, rapidly fabricating high-performance chitosan hydrogels in one-step controllable processes is still a challenge for some advanced applications. Here, we report a trifunctional microgel-mediated photochemical (TMMP) strategy to achieve the fabrication of printable tough chitosan-based hydrogels (PTCHs) in seconds. Such microgels help the slow release of persulfate anions and their uniform dispersion in an aqueous solution of cationic chitosan. The released persulfates are available for preparing multiple networks of phenolic coupling of modified chitosan and radical polymerization of Pluronic F127 via orthogonal tris(bipyridine)ruthenium(II)-based photochemistry, respectively. Trifunctional microgels have reversible Ca2+-crosslinked networks that further improve the hydrogels’ mechanical properties and toughness. The maximum stress and toughness increase by >20 folds compared to the chitosan and F127 hydrogels with single network structures. Moreover, these microgels enable the precursor to have a good shearing-thinning property and benefit the controllable preparation of PTCHs in a short time, as low as ∼4 s under visible light irradiation. It, therefore, is compatible with standard printing techniques to make complex structures. Strain sensors based on structured PTCHs have stable mechanical and responsive properties in the water, which are applied for real-time underwater communications (<0.4 s). It is anticipated that this one-step TMMP strategy opens new horizons for designing advanced chitosan hydrogels.
中文翻译:
用于水下通信的三功能微凝胶介导的可打印高性能壳聚糖水凝胶的制备和增韧
天然且生物相容的壳聚糖已被证明具有广泛的应用。然而,在一步可控过程中快速制造高性能壳聚糖水凝胶对于一些先进应用来说仍然是一个挑战。在这里,我们报告了一种三功能微凝胶介导的光化学(TMMP)策略,可在几秒钟内实现可打印的坚韧的基于壳聚糖的水凝胶(PTCH)的制造。这种微凝胶有助于过硫酸根阴离子的缓慢释放及其在阳离子壳聚糖水溶液中的均匀分散。释放的过硫酸盐可分别通过基于正交三(联吡啶)钌(II)的光化学制备改性壳聚糖的酚偶联和Pluronic F127的自由基聚合的多个网络。三官能微凝胶具有可逆的Ca 2+交联网络,进一步提高了水凝胶的机械性能和韧性。与单一网络结构的壳聚糖和F127水凝胶相比,最大应力和韧性增加>20倍。此外,这些微凝胶使前驱体具有良好的剪切稀化性能,有利于在可见光照射下短至~4秒的时间内可控制备PTCHs。因此,它与标准印刷技术兼容,可以制造复杂的结构。基于结构化PTCH的应变传感器在水中具有稳定的机械和响应特性,可用于实时水下通信(<0.4 s)。预计这一一步式 TMMP 策略将为设计先进的壳聚糖水凝胶开辟新的视野。
更新日期:2023-02-08
中文翻译:
用于水下通信的三功能微凝胶介导的可打印高性能壳聚糖水凝胶的制备和增韧
天然且生物相容的壳聚糖已被证明具有广泛的应用。然而,在一步可控过程中快速制造高性能壳聚糖水凝胶对于一些先进应用来说仍然是一个挑战。在这里,我们报告了一种三功能微凝胶介导的光化学(TMMP)策略,可在几秒钟内实现可打印的坚韧的基于壳聚糖的水凝胶(PTCH)的制造。这种微凝胶有助于过硫酸根阴离子的缓慢释放及其在阳离子壳聚糖水溶液中的均匀分散。释放的过硫酸盐可分别通过基于正交三(联吡啶)钌(II)的光化学制备改性壳聚糖的酚偶联和Pluronic F127的自由基聚合的多个网络。三官能微凝胶具有可逆的Ca 2+交联网络,进一步提高了水凝胶的机械性能和韧性。与单一网络结构的壳聚糖和F127水凝胶相比,最大应力和韧性增加>20倍。此外,这些微凝胶使前驱体具有良好的剪切稀化性能,有利于在可见光照射下短至~4秒的时间内可控制备PTCHs。因此,它与标准印刷技术兼容,可以制造复杂的结构。基于结构化PTCH的应变传感器在水中具有稳定的机械和响应特性,可用于实时水下通信(<0.4 s)。预计这一一步式 TMMP 策略将为设计先进的壳聚糖水凝胶开辟新的视野。