Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On the Milnor number of non-isolated singularities of holomorphic foliations and its topological invariance
Journal of Topology ( IF 0.8 ) Pub Date : 2023-02-06 , DOI: 10.1112/topo.12281 Arturo Fernández‐Pérez 1 , Gilcione Nonato Costa 1 , Rudy Rosas Bazán 2
Journal of Topology ( IF 0.8 ) Pub Date : 2023-02-06 , DOI: 10.1112/topo.12281 Arturo Fernández‐Pérez 1 , Gilcione Nonato Costa 1 , Rudy Rosas Bazán 2
Affiliation
We define the Milnor number of a one-dimensional holomorphic foliation as the intersection number of two holomorphic sections with respect to a compact connected component of its singular set. Under certain conditions, we prove that the Milnor number of on a three-dimensional manifold with respect to is invariant by topological equivalences.
中文翻译:
全纯叶面非孤立奇点的米尔诺数及其拓扑不变性
我们定义一维全纯叶理的米尔诺数 作为两个全纯截面相对于紧连通分量的交集数 它的奇异集。在一定条件下,我们证明了 Milnor 数 在三维流形上 不变的 拓扑等价。
更新日期:2023-02-08
中文翻译:
全纯叶面非孤立奇点的米尔诺数及其拓扑不变性
我们定义一维全纯叶理的米尔诺数