当前位置: X-MOL 学术J. Topol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simplicial volume and essentiality of manifolds fibered over spheres
Journal of Topology ( IF 0.8 ) Pub Date : 2023-02-06 , DOI: 10.1112/topo.12286
Thorben Kastenholz 1 , Jens Reinhold 2
Affiliation  

We study the question when a manifold that fibers over a sphere can be rationally essential, or have positive simplicial volume. More concretely, we show that mapping tori of manifolds (whose fundamental groups can be quite arbitrary) of dimension ◂⩾▸2n+17$2n +1 \geqslant 7$ with non-zero simplicial volume are very common. This contrasts the case of fiber bundles over a sphere of dimension d2$d\geqslant 2$: we prove that their total spaces are rationally inessential if d3$d\geqslant 3$, and always have simplicial volume 0. Using a result by Dranishnikov, we also deduce a surprising property of macroscopic dimension, and we give two applications to positive scalar curvature and characteristic classes, respectively.

中文翻译:

球体上纤维化的流形的单纯体积和本质

我们研究的问题是,球体上的纤维流形可以是理性本质的,或者具有正单纯形体积。更具体地说,我们展示了维数流形(其基本群可以是相当任意的)的映射托里◂⩾▸2个n+1个7$2n +1 \geqslant 7$具有非零单纯体积的非常普遍。这与维度球体上的纤维束的情况形成对比d2个$d\geqslant 2$:我们证明如果d3个$d\geqslant 3$,并且总是有单纯体积 0。使用 Dranishnikov 的结果,我们还推导出宏观维度的一个令人惊讶的性质,我们分别给出了正标量曲率和特征类的两个应用。
更新日期:2023-02-08
down
wechat
bug