当前位置:
X-MOL 学术
›
Adv. Healthcare Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mn3O4 Nanoshell Coated Metal–Organic Frameworks with Microenvironment-Driven O2 Production and GSH Exhaustion Ability for Enhanced Chemodynamic and Photodynamic Cancer Therapies
Advanced Healthcare Materials ( IF 10.0 ) Pub Date : 2023-02-08 , DOI: 10.1002/adhm.202202280
Wenya Li 1 , Rongtian Li 2 , Qiang Ye 1 , Yiming Zou 3 , Xing Lu 1 , Wenhua Zhang 4 , Jinxiang Chen 3 , Yinghua Zhao 1
Advanced Healthcare Materials ( IF 10.0 ) Pub Date : 2023-02-08 , DOI: 10.1002/adhm.202202280
Wenya Li 1 , Rongtian Li 2 , Qiang Ye 1 , Yiming Zou 3 , Xing Lu 1 , Wenhua Zhang 4 , Jinxiang Chen 3 , Yinghua Zhao 1
Affiliation
![]() |
Nanomedicine exhibits emerging potentials to deliver advanced therapeutic strategies in the fight against triple-negative breast cancer (TNBC). Nevertheless, it is still difficult to develop a precise codelivery system that integrates highly effective photosensitizers, low toxicity, and hydrophobicity. In this study, PCN-224 is selected as the carrier to enable effective cancer therapy through light-activated reactive oxygen species (ROS) formation, and the PCN-224@Mn3O4@HA is created in a simple one-step process by coating Mn3O4 nanoshells on the PCN-224 template, which can then be used as an “ROS activator” to exert catalase- and glutathione peroxidase-like activities to alleviate tumor hypoxia while reducing tumor reducibility, leading to improved photodynamic therapeutic (PDT) effect of PCN-224. Meanwhile, Mn2+ produced cytotoxic hydroxyl radicals (∙OH) via the Fenton-like reaction, thus producing a promising spontaneous chemodynamic therapeutic (CDT) effect. Importantly, by remodeling the tumor microenvironment (TME), Mn3O4 nanoshells downregulated hypoxia-inducible factor 1α expression, inhibiting tumor growth and preventing tumor revival. Thus, the developed nanoshells, via light-controlled ROS formation and multimodality imaging abilities, can effectively inhibit tumor proliferation through synergistic PDT/CDT, and prevent tumor resurgence by remodeling TME.
中文翻译:
Mn3O4 纳米壳涂层金属有机框架具有微环境驱动的 O2 产生和 GSH 耗尽能力,可增强化学动力学和光动力学癌症治疗
纳米医学在对抗三阴性乳腺癌(TNBC)方面展现出提供先进治疗策略的新兴潜力。然而,开发集高效光敏剂、低毒性和疏水性于一体的精确共递送系统仍然很困难。在这项研究中,选择PCN-224作为载体,通过光激活活性氧(ROS)的形成实现有效的癌症治疗,并通过简单的一步过程创建PCN-224@Mn 3 O 4 @HA通过涂覆Mn 3 O 4PCN-224模板上的纳米壳,然后可以用作“ROS激活剂”,发挥过氧化氢酶和谷胱甘肽过氧化物酶样活性,缓解肿瘤缺氧,同时降低肿瘤还原性,从而改善PCN-224的光动力治疗(PDT)效果224. 同时,Mn 2+通过类芬顿反应产生细胞毒性羟基自由基(∙OH),从而产生有希望的自发化学动力学治疗(CDT)效果。重要的是,通过重塑肿瘤微环境(TME),Mn 3 O 4纳米壳下调了缺氧诱导因子 1 α表达,抑制肿瘤生长并防止肿瘤复活。因此,所开发的纳米壳通过光控ROS形成和多模态成像能力,可以通过协同PDT/CDT有效抑制肿瘤增殖,并通过重塑TME来防止肿瘤复发。
更新日期:2023-02-08
中文翻译:

Mn3O4 纳米壳涂层金属有机框架具有微环境驱动的 O2 产生和 GSH 耗尽能力,可增强化学动力学和光动力学癌症治疗
纳米医学在对抗三阴性乳腺癌(TNBC)方面展现出提供先进治疗策略的新兴潜力。然而,开发集高效光敏剂、低毒性和疏水性于一体的精确共递送系统仍然很困难。在这项研究中,选择PCN-224作为载体,通过光激活活性氧(ROS)的形成实现有效的癌症治疗,并通过简单的一步过程创建PCN-224@Mn 3 O 4 @HA通过涂覆Mn 3 O 4PCN-224模板上的纳米壳,然后可以用作“ROS激活剂”,发挥过氧化氢酶和谷胱甘肽过氧化物酶样活性,缓解肿瘤缺氧,同时降低肿瘤还原性,从而改善PCN-224的光动力治疗(PDT)效果224. 同时,Mn 2+通过类芬顿反应产生细胞毒性羟基自由基(∙OH),从而产生有希望的自发化学动力学治疗(CDT)效果。重要的是,通过重塑肿瘤微环境(TME),Mn 3 O 4纳米壳下调了缺氧诱导因子 1 α表达,抑制肿瘤生长并防止肿瘤复活。因此,所开发的纳米壳通过光控ROS形成和多模态成像能力,可以通过协同PDT/CDT有效抑制肿瘤增殖,并通过重塑TME来防止肿瘤复发。