当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlled oxidation of Cu particles by H2O2 to form Cu/CuO nanostructure with enhanced gas sensing performance
Applied Surface Science ( IF 6.3 ) Pub Date : 2023-02-06 , DOI: 10.1016/j.apsusc.2023.156668
Mingji Xu , Xi Ran , Ruoli Chen , Maoshen Chen , Ruijuan Qi , Chengqin Dai , Chunhua Luo , Hui Peng , Hechun Lin

Gas sensors based on metal/metal oxide heterostructures have shown rapid advancements due to their excellent sensing performance. However, it is difficult to control the formation of Cu/CuO nanostructure due to the easy oxidation of copper and limits its sensing application. Herein, we reported the controlled oxidation of Cu superfine particles (SPs) to form Cu/CuO nanostructure via reducing CuO with monoethanolamine, oxidized with H2O2 and then in-situ annealed at 250 °C. The organic residue generated during the reducing step plays a key role in controlling the oxidation of Cu SPs to form Cu/CuO nanostructure. The nanomaterial was used to fabricate gas sensor, which presents excellent p-type sensing performance to ethanol with good selectivity and a good linear relationship in the range of 1 to 100 ppm ethanol. The response to 100 ppm ethanol can be up to 99.40 under 200 °C operating temperature, and the response under 250 °C is 30.66 with the shorter response and recovery time of 214 s and 74 s, respectively. The sensing mechanism can be explained by the adsorption–desorption model. This study provides a promising strategy for the synthesis of Cu/CuO nanostructure and open a new avenue for the development of highly sensitive ethanol sensor.



中文翻译:

H2O2 控制 Cu 颗粒氧化形成具有增强气敏性能的 Cu/CuO 纳米结构

基于金属/金属氧化物异质结构的气体传感器由于其出色的传感性能而显示出快速的进步。然而,由于铜的易氧化性,Cu/CuO纳米结构的形成难以控制,限制了其传感应用。在此,我们报道了通过用单乙醇胺还原 CuO,用 H 2 O 2氧化,Cu 超细颗粒 (SPs) 受控氧化形成 Cu/CuO 纳米结构然后在 250 °C 下原位退火。还原步骤中产生的有机残留物在控制 Cu SP 氧化形成 Cu/CuO 纳米结构方面起着关键作用。该纳米材料用于制备气体传感器,对乙醇具有良好的p型传感性能,在1-100 ppm乙醇范围内具有良好的选择性和良好的线性关系。在 200 °C 的工作温度下,对 100 ppm 乙醇的响应可达 99.40,在 250 °C 下的响应为 30.66,响应和恢复时间分别为 214 s 和 74 s。传感机制可以用吸附-解吸模型来解释。该研究为Cu/CuO纳米结构的合成提供了一种有前途的策略,并为开发高灵敏度乙醇传感器开辟了一条新途径。

更新日期:2023-02-08
down
wechat
bug