Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optogenetics-Inspired Fluorescent Synaptic Devices with Nonvolatility
ACS Nano ( IF 15.8 ) Pub Date : 2023-02-06 , DOI: 10.1021/acsnano.2c10816 Yue Wang 1, 2 , Kun Wang 1 , Xiangyu Hu 3 , Ya'kun Wang 4 , Wandong Gao 2 , Yiqiang Zhang 5 , Zhenghui Liu 4 , Yi Zheng 3 , Ke Xu 4 , Deren Yang 1, 2 , Xiaodong Pi 1, 2
ACS Nano ( IF 15.8 ) Pub Date : 2023-02-06 , DOI: 10.1021/acsnano.2c10816 Yue Wang 1, 2 , Kun Wang 1 , Xiangyu Hu 3 , Ya'kun Wang 4 , Wandong Gao 2 , Yiqiang Zhang 5 , Zhenghui Liu 4 , Yi Zheng 3 , Ke Xu 4 , Deren Yang 1, 2 , Xiaodong Pi 1, 2
Affiliation
Given the synergy of optogenetics and bioimaging in neuroscience, it is possible for light to simultaneously modulate and visualize synaptic events of optoelectronic synaptic devices, which are building blocks of a neuromorphic computing system with optoelectronic integration. Here we demonstrate the realization of the simultaneous modulation and visualization of synaptic events by using optically stimulated synaptic devices based on the heterostructure of fluorescent silicon quantum dots (Si QDs) and monolayer molybdenum disulfide (MoS2). The charge-transfer-enabled photogating effect of the Si QDs/MoS2 heterostructure leads to the nonvolatility of the synaptic devices, which exhibit important synaptic functionalities and synchronous fluorescence upon optical stimulation. An array of the Si QDs/MoS2 optoelectronic synaptic devices is well-employed to mimic robust neural population coding. Defective devices in this array may be pinpointed by the absence of their fluorescence. This work has an important implication for the development of synaptic devices facilitating the system-level diagnosis and device-level positioning of a neuromorphic computing system.
中文翻译:
具有非易失性的光遗传学启发的荧光突触装置
鉴于光遗传学和生物成像在神经科学中的协同作用,光可以同时调制和可视化光电突触设备的突触事件,这些设备是具有光电集成的神经形态计算系统的构建块。在这里,我们展示了通过使用基于荧光硅量子点 (Si QD) 和单层二硫化钼 (MoS 2 ) 异质结构的光刺激突触设备实现突触事件的同步调制和可视化。Si QDs/MoS 2的电荷转移使能光门效应异质结构导致突触装置的非易失性,突触装置在光刺激下表现出重要的突触功能和同步荧光。一系列 Si QD/MoS 2光电突触设备被很好地用于模拟稳健的神经群体编码。该阵列中有缺陷的设备可以通过它们的荧光缺失来查明。这项工作对于促进神经形态计算系统的系统级诊断和设备级定位的突触设备的开发具有重要意义。
更新日期:2023-02-06
中文翻译:
具有非易失性的光遗传学启发的荧光突触装置
鉴于光遗传学和生物成像在神经科学中的协同作用,光可以同时调制和可视化光电突触设备的突触事件,这些设备是具有光电集成的神经形态计算系统的构建块。在这里,我们展示了通过使用基于荧光硅量子点 (Si QD) 和单层二硫化钼 (MoS 2 ) 异质结构的光刺激突触设备实现突触事件的同步调制和可视化。Si QDs/MoS 2的电荷转移使能光门效应异质结构导致突触装置的非易失性,突触装置在光刺激下表现出重要的突触功能和同步荧光。一系列 Si QD/MoS 2光电突触设备被很好地用于模拟稳健的神经群体编码。该阵列中有缺陷的设备可以通过它们的荧光缺失来查明。这项工作对于促进神经形态计算系统的系统级诊断和设备级定位的突触设备的开发具有重要意义。