Information and Organization ( IF 5.7 ) Pub Date : 2023-02-04 , DOI: 10.1016/j.infoandorg.2023.100450 Gregory Vial
There is widespread agreement in research and practice that data governance is an instrumental element to help organizations leverage and protect data. IS research has observed that our practical and our scientific knowledge of data governance remains limited, and the increasing ability for organizations to generate, acquire, store, transform, process and analyze data calls for us to further identify and address issues on the topic. Striving to contribute to answer this pressing need, we argue that understanding the nature and the implications of governance mechanisms is of high importance as it is these mechanisms that effectively instantiate data governance in an organization. Building on our experience preparing and teaching workshops to 102 executives on the topic, we adopt a position of engaged scholarship and provide a translational account of our pedagogical experience on data governance, highlighting four outstanding themes for IS research. We argue that these four themes—(1) embracing data governance without compromising digital innovation; (2) enacting data governance through repertoires of mechanisms; (3) moving away from data governance toward governing data; and (4) moving away from a view of data at rest to adopt a service-based perspective on data governance—are highly relevant for practice and research. In our view, studying these themes will contribute to inform practitioners who often struggle with the implementation of comprehensive data governance programs and frameworks. At the same time, the ability to leverage theory to study these themes can help research generate novel theoretical contributions on data governance, helping future research on the topic.
中文翻译:
数据治理和数字创新:IS 研究从业者问题的转化说明
研究和实践中普遍认为,数据治理是帮助组织利用和保护数据的重要元素。IS 研究发现,我们在数据治理方面的实践和科学知识仍然有限,组织生成、获取、存储、转换、处理和分析数据的能力不断增强,这要求我们进一步识别和解决该主题的问题。努力为满足这一紧迫需求做出贡献,我们认为理解治理机制的性质和影响非常重要,因为正是这些机制有效地实例化了组织中的数据治理。基于我们为 102 名高管准备和教授有关该主题的研讨会的经验,我们采取了参与奖学金的立场,并提供了我们在数据治理方面的教学经验的转化说明,突出了 IS 研究的四个突出主题。我们认为这四个主题——(1)在不影响数字创新的情况下拥抱数据治理;(2) 通过机制库实施数据治理;(3) 从数据治理转向治理数据; (4) 从静态数据的角度转向采用基于服务的数据治理视角——与实践和研究高度相关。我们认为,研究这些主题将有助于为经常难以实施综合数据治理计划和框架的从业者提供信息。同时,利用理论研究这些主题的能力可以帮助研究在数据治理方面产生新的理论贡献,有助于未来对该主题的研究。