Bulletin of Volcanology ( IF 3.6 ) Pub Date : 2023-02-04 , DOI: 10.1007/s00445-023-01627-2
R. P. Cole , J. D. L. White , R. J. M. Baxter , M. H. Bowman , T. Dürig , M. Fleming , B. Pooley , J. Ruz-Ginouves , M. T. Gudmundsson , S. J. Cronin , G. S. Leonard , G. A. Valentine ,
|
Fissure eruptions initiate with magma ascending and spreading through cracks in the ground that can extend for kilometres at the surface. Eruptions eventually localise to form one or a few persistent conduits and ultimately an array of discrete cones or craters. We built a new experimental apparatus to investigate the influences of fissure shape and wall-rock temperature on localisation within a volcanic fissure, and the thermal feedbacks associated with variability of these parameters. Our artificial fissure, or “Artfish,” has a slot geometry with adjustable shape and wall temperature. We can simulate both starting variability in fissure geometry and wall temperature, as well as changes in these parameters during an experiment to replicate, for example, blockage by wall-rock collapse, widening by wall-rock erosion, and warming by adjacent intrusions. We use polyethylene glycol (PEG 600) for our analogue fluid. A variable-speed pump allows for a range of fluid injection and ascent rates. Initial tests showcase the capabilities of the model and the types of data that may be acquired. Additional key features achieved include a stable and planar injection system, fluid recycling, and the use of particle tracers for monitoring flow patterns and velocities. The thermal evolution of the fluid-wall interface is quantitatively measured with thermal sensors, and the change in state of the PEG provides a clear visual indication of flow behaviour and solidification progress recorded on video. The potential experiments that can be conducted with this highly versatile model are numerous and will be used to gain a better understanding of the thermal controls on flow localisation and conduit development. This will assist hazard modellers to assess controls on eruption evolution and potentially to forecast sites where an initial fissure eruption may focus.
中文翻译:

具有可调几何形状和壁温的模型火山裂缝
裂缝喷发始于岩浆上升并通过地面裂缝扩散,这些裂缝可在地表延伸数公里。喷发最终会局部化形成一个或几个持久的管道,并最终形成一系列离散的锥体或火山口。我们建造了一个新的实验装置来研究裂隙形状和围岩温度对火山裂隙内定位的影响,以及与这些参数的变化相关的热反馈。我们的人工裂隙或“Artfish”具有可调节形状和壁温的槽几何形状。我们可以模拟裂缝几何形状和壁温的起始变化,以及这些参数在实验过程中的变化,以复制,例如,围岩坍塌造成的堵塞,围岩侵蚀造成的扩大,并因邻近的入侵而变暖。我们使用聚乙二醇 (PEG 600) 作为模拟液。变速泵允许一系列流体注入和上升速率。初始测试展示了模型的功能和可能获取的数据类型。实现的其他关键特性包括稳定的平面注入系统、流体回收以及使用粒子示踪剂监测流动模式和速度。流体壁界面的热演化是用热传感器定量测量的,PEG 状态的变化提供了视频中记录的流动行为和凝固过程的清晰视觉指示。可以使用这种高度通用的模型进行的潜在实验很多,将用于更好地了解流动定位和管道开发的热控制。这将有助于灾害建模者评估对喷发演化的控制,并可能预测初始裂隙喷发可能集中的地点。