当前位置:
X-MOL 学术
›
Rev. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Membrane-aerated biofilm reactor (MABR): recent advances and challenges
Reviews in Chemical Engineering ( IF 4.9 ) Pub Date : 2023-02-03 , DOI: 10.1515/revce-2021-0078 Utjok W. R. Siagian 1 , Dwi L. Friatnasary 2 , Khoiruddin Khoiruddin 2 , Reynard Reynard 2 , Guanglei Qiu 3 , Yen-Peng Ting 4 , I Gede Wenten 2, 5
Reviews in Chemical Engineering ( IF 4.9 ) Pub Date : 2023-02-03 , DOI: 10.1515/revce-2021-0078 Utjok W. R. Siagian 1 , Dwi L. Friatnasary 2 , Khoiruddin Khoiruddin 2 , Reynard Reynard 2 , Guanglei Qiu 3 , Yen-Peng Ting 4 , I Gede Wenten 2, 5
Affiliation
Membrane-aerated biofilm reactor (MABR) has been considered as an innovative technology to solve aeration issues in conventional bioreactors. MABR uses a membrane to supply oxygen to biofilm grown on the membrane surface. MABR can perform bubbleless aeration with high oxygen transfer rates, which can reduce energy requirements and expenses. In addition, a unique feature of counter-diffusion creates a stratified biofilm structure, allowing the simultaneous nitrification–denitrification process to take place in a single MABR. Controlling the biofilm is crucial in MABR operation, since its thickness significantly affects MABR performance. Several approaches have been proposed to control biofilm growth, such as increasing shear stress, adding chemical agents (e.g., surfactant), using biological predators to suppress microorganism growth, and introducing ultrasound cavitation to detach biofilm. Several studies also showed the important role of membrane properties and configuration in biofilm development. In addition, MABR demonstrates high removal rates of pollutants in various wastewater treatments, including in full-scale plants. This review presents the basic principles of MABR and the effect of operational conditions on its performance. Biofilm formation, methods to control its thickness, and membrane materials are also discussed. In addition, MABR performance in various applications, full-scale MBRs, and challenges is summarized.
中文翻译:
膜曝气生物膜反应器 (MABR):最新进展和挑战
膜曝气生物膜反应器 (MABR) 被认为是解决传统生物反应器曝气问题的创新技术。MABR 使用膜为膜表面生长的生物膜提供氧气。MABR 可以进行高氧转移率的无气泡曝气,这可以减少能源需求和费用。此外,反扩散的独特特征创造了分层生物膜结构,允许同时硝化-反硝化过程在单个 MABR 中进行。控制生物膜在 MABR 操作中至关重要,因为它的厚度会显着影响 MABR 性能。已经提出了几种控制生物膜生长的方法,例如增加剪切应力、添加化学试剂(例如表面活性剂)、使用生物捕食者来抑制微生物生长,并引入超声空化作用以分离生物膜。几项研究还显示了膜特性和配置在生物膜形成中的重要作用。此外,MABR 在各种废水处理中表现出高污染物去除率,包括在全规模工厂中。本综述介绍了 MABR 的基本原理以及操作条件对其性能的影响。还讨论了生物膜的形成、控制其厚度的方法和膜材料。此外,还总结了 MABR 在各种应用、全尺寸 MBR 和挑战中的性能。包括在全尺寸工厂中。本综述介绍了 MABR 的基本原理以及操作条件对其性能的影响。还讨论了生物膜的形成、控制其厚度的方法和膜材料。此外,还总结了 MABR 在各种应用、全尺寸 MBR 和挑战中的性能。包括在全尺寸工厂中。本综述介绍了 MABR 的基本原理以及操作条件对其性能的影响。还讨论了生物膜的形成、控制其厚度的方法和膜材料。此外,还总结了 MABR 在各种应用、全尺寸 MBR 和挑战中的性能。
更新日期:2023-02-03
中文翻译:
膜曝气生物膜反应器 (MABR):最新进展和挑战
膜曝气生物膜反应器 (MABR) 被认为是解决传统生物反应器曝气问题的创新技术。MABR 使用膜为膜表面生长的生物膜提供氧气。MABR 可以进行高氧转移率的无气泡曝气,这可以减少能源需求和费用。此外,反扩散的独特特征创造了分层生物膜结构,允许同时硝化-反硝化过程在单个 MABR 中进行。控制生物膜在 MABR 操作中至关重要,因为它的厚度会显着影响 MABR 性能。已经提出了几种控制生物膜生长的方法,例如增加剪切应力、添加化学试剂(例如表面活性剂)、使用生物捕食者来抑制微生物生长,并引入超声空化作用以分离生物膜。几项研究还显示了膜特性和配置在生物膜形成中的重要作用。此外,MABR 在各种废水处理中表现出高污染物去除率,包括在全规模工厂中。本综述介绍了 MABR 的基本原理以及操作条件对其性能的影响。还讨论了生物膜的形成、控制其厚度的方法和膜材料。此外,还总结了 MABR 在各种应用、全尺寸 MBR 和挑战中的性能。包括在全尺寸工厂中。本综述介绍了 MABR 的基本原理以及操作条件对其性能的影响。还讨论了生物膜的形成、控制其厚度的方法和膜材料。此外,还总结了 MABR 在各种应用、全尺寸 MBR 和挑战中的性能。包括在全尺寸工厂中。本综述介绍了 MABR 的基本原理以及操作条件对其性能的影响。还讨论了生物膜的形成、控制其厚度的方法和膜材料。此外,还总结了 MABR 在各种应用、全尺寸 MBR 和挑战中的性能。