当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
BaTiO3 Nanoparticles Coated with Polyurethane and SiO2 for Enhanced Dielectric Properties
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2023-02-03 , DOI: 10.1021/acsanm.2c05042 Xinhua Wang 1 , You Yuan 1 , Donglin Chen 1 , Bowen Sun 1 , Jun Qian 1 , Xiaoyun Liu 1 , Peiyuan Zuo 1 , Yi Chen 2 , Qixin Zhuang 1
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2023-02-03 , DOI: 10.1021/acsanm.2c05042 Xinhua Wang 1 , You Yuan 1 , Donglin Chen 1 , Bowen Sun 1 , Jun Qian 1 , Xiaoyun Liu 1 , Peiyuan Zuo 1 , Yi Chen 2 , Qixin Zhuang 1
Affiliation
Core–shell structures are commonly employed in dielectric nanocomposites to improve the energy storage capacity of polymers. However, few studies have focused on organic–inorganic double-layered shell structures. Thus, there is an urgent need to elucidate the detailed effects of the flexible segment of polymer shells and inorganic shells on the dielectric properties. Herein, we synthesized a hierarchical core–double shell BT/PU/SiO2 nanofiller with a thickness of 3–5 nm PU and 15 nm SiO2 layers. This unique shell structure possesses a gradient permittivity that regularly decreases from the inside to the outside of shells. Detailed electrical characterizations reveal that the intermediate PU shell with shorter flexible segments can limit the carrier migration and thus decrease the dielectric loss. The interfacial polarization in double-layered BT/PU/SiO2 is beneficial to improve the dielectric constant of the as-prepared nanocomposites. COMSOL Multiphysics simulation results also confirm that the delicate structure enables the internal electric field more homogeneous, which enhances the breakdown strength owing to its gradient dielectric constant. In addition, the dielectric loss of BT/PU/SiO2-PVDF is 0.032 when the filling is <4 wt %, which is only 45% compared with that of BT-PVDF. Meanwhile, the energy density of the nanocomposite reaches 7.41 J cm–3, which is 1.74 times higher than that of pure PVDF (2.7 J cm–3). Accordingly, our current work provides insight into the design of hierarchical core–double shell nanoparticles and their derived polymer nanocomposite capacitors for high-energy-density storage applications.
中文翻译:
涂有聚氨酯和 SiO2 以增强介电性能的 BaTiO3 纳米颗粒
核壳结构通常用于介电纳米复合材料中,以提高聚合物的储能能力。然而,很少有研究关注有机-无机双层壳结构。因此,迫切需要阐明聚合物壳和无机壳的柔性链段对介电性能的详细影响。在此,我们合成了具有 3–5 nm PU 和 15 nm SiO 2 厚度的分层核-双壳 BT/PU/SiO 2纳米填料层。这种独特的壳结构具有梯度介电常数,从壳的内部到外部有规律地减小。详细的电气特性表明,具有较短柔性段的中间 PU 壳可以限制载流子迁移,从而降低介电损耗。双层BT/PU/SiO 2的界面极化有利于提高所制备纳米复合材料的介电常数。COMSOL Multiphysics 仿真结果还证实,精细的结构使内部电场更加均匀,由于其梯度介电常数而提高了击穿强度。此外,BT/PU/SiO 2的介电损耗-当填充量<4 wt%时PVDF为0.032,与BT-PVDF相比仅为45%。同时,纳米复合材料的能量密度达到7.41 J cm –3,是纯PVDF(2.7 J cm –3)的1.74倍。因此,我们目前的工作提供了对用于高能量密度存储应用的分层核-双壳纳米粒子及其衍生的聚合物纳米复合电容器的设计的深入了解。
更新日期:2023-02-03
中文翻译:
涂有聚氨酯和 SiO2 以增强介电性能的 BaTiO3 纳米颗粒
核壳结构通常用于介电纳米复合材料中,以提高聚合物的储能能力。然而,很少有研究关注有机-无机双层壳结构。因此,迫切需要阐明聚合物壳和无机壳的柔性链段对介电性能的详细影响。在此,我们合成了具有 3–5 nm PU 和 15 nm SiO 2 厚度的分层核-双壳 BT/PU/SiO 2纳米填料层。这种独特的壳结构具有梯度介电常数,从壳的内部到外部有规律地减小。详细的电气特性表明,具有较短柔性段的中间 PU 壳可以限制载流子迁移,从而降低介电损耗。双层BT/PU/SiO 2的界面极化有利于提高所制备纳米复合材料的介电常数。COMSOL Multiphysics 仿真结果还证实,精细的结构使内部电场更加均匀,由于其梯度介电常数而提高了击穿强度。此外,BT/PU/SiO 2的介电损耗-当填充量<4 wt%时PVDF为0.032,与BT-PVDF相比仅为45%。同时,纳米复合材料的能量密度达到7.41 J cm –3,是纯PVDF(2.7 J cm –3)的1.74倍。因此,我们目前的工作提供了对用于高能量密度存储应用的分层核-双壳纳米粒子及其衍生的聚合物纳米复合电容器的设计的深入了解。