当前位置: X-MOL 学术Energy Environ. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Situ Mineralization of Biomass-Derived Hydrogels Boosts Capacitive Electrochemical Energy Storage in Free-Standing 3D Carbon Aerogels
Energy & Environmental Materials ( IF 13.0 ) Pub Date : 2023-01-30 , DOI: 10.1002/eem2.12591
Anjali Achazhiyath Edathil 1 , Babak Rezaei 1 , Kristoffer Almdal 2 , Stephan Sylvest Keller 1
Affiliation  

Here, a novel fabrication method for making free-standing 3D hierarchical porous carbon aerogels from molecularly engineered biomass-derived hydrogels is presented. In situ formed flower-like CaCO3 molecularly embedded within the hydrogel network regulated the pore structure during in situ mineralization assisted one-step activation graphitization (iMAG), while the intrinsic structural integrity of the carbon aerogels was maintained. The homogenously distributed minerals simultaneously acted as a hard template, activating agent, and graphitization catalyst. The decomposition of the homogenously distributed CaCO3 during iMAG followed by the etching of residual CaO through a mild acid washing endowed a robust carbon aerogel with high porosity and excellent electrochemical performance. At 0.5 mA cm−2, the gravimetric capacitance increased from 0.01 F g−1 without mineralization to 322 F g−1 with iMAG, which exceeds values reported for any other free-standing or powder-based biomass-derived carbon electrodes. An outstanding cycling stability of ~104% after 1000 cycles in 1 M HClO4 was demonstrated. The assembled symmetric supercapacitor device delivered a high specific capacitance of 376 F g−1 and a high energy density of 26 W h kg−1 at a power density of 4000 W kg−1, with excellent cycling performance (98.5% retention after 2000 cycles). In combination with the proposed 3D printed mold-assisted solution casting (3DMASC), iMAG allows for the generation of free-standing carbon aerogel architectures with arbitrary shapes. Furthermore, the novel method introduces flexibility in constructing free-standing carbon aerogels from any ionically cross-linkable biopolymer while maintaining the ability to tailor the design, dimensions, and pore size distribution for specific energy storage applications.

中文翻译:

生物质水凝胶的原位矿化促进独立式 3D 碳气凝胶的电容电化学储能

在这里,提出了一种利用分子工程生物质衍生水凝胶制造独立式 3D 分层多孔碳气凝胶的新颖制造方法。原位形成的花状CaCO 3分子嵌入水凝胶网络中,在原位矿化辅助一步活化石墨化(iMAG)过程中调节孔隙结构,同时保持碳气凝胶的内在结构完整性。均匀分布的矿物同时充当硬模板、活化剂和石墨化催化剂。在 iMAG 过程中均匀分布的 CaCO 3分解,然后通过弱酸清洗蚀刻残留的 CaO,从而赋予坚固的碳气凝胶以高孔隙率和优异的电化学性能。在0.5 mA cm -2下,重量电容从没有矿化的0.01 F g -1增加到使用iMAG时的322 F g -1,这超过了任何其他独立式或基于粉末的生物质衍生碳电极的报告值。在 1 M HClO 4中循环 1000 次后,表现出出色的循环稳定性,约为 104% 。组装的对称超级电容器装置在4000 W kg -1的功率密度下具有376 F g -1的高比电容和26 W h kg -1的高能量密度,具有优异的循环性能(2000次循环后保留率为98.5%) )。与提议的 3D 打印模具辅助溶液铸造 (3DMASC) 相结合,iMAG 可以生成任意形状的独立式碳气凝胶结构。此外,该新颖方法引入了从任何可离子交联的生物聚合物构建独立式碳气凝胶的灵活性,同时保持了针对特定储能应用定制设计、尺寸和孔径分布的能力。
更新日期:2023-01-30
down
wechat
bug