Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrodeposited MOFs Membrane with In Situ Incorporation of Charged Molecules for Osmotic Energy Harvesting
Small ( IF 13.0 ) Pub Date : 2023-02-01 , DOI: 10.1002/smll.202207559 Bing Yao 1 , Shabab Hussain 1 , Zhizhen Ye 1, 2 , Xinsheng Peng 1, 2
Small ( IF 13.0 ) Pub Date : 2023-02-01 , DOI: 10.1002/smll.202207559 Bing Yao 1 , Shabab Hussain 1 , Zhizhen Ye 1, 2 , Xinsheng Peng 1, 2
Affiliation
Ion-selective membranes are considered as the promising candidates for osmotic energy harvesting. However, the fabrication of highly perm-selective membrane is the major challenge. Metal-organic frameworks (MOFs) with well-defined nanochannels along functional charged groups show great importance to tackle this problem. Here, a series of dense sodium polystyrene sulfonate (PSS) incorporated MOFs composite membranes (PSS@MOFs) on a porous anodic aluminum oxide (AAO) membrane via in situ anodic electrodeposition process are developed. Benefiting to the novel structural design of the confined Ag layer, PSS@MOFs dense composite membrane with less defects formed. The sulfonated nanochannels of the PSS@MOFs composite membrane provided rapid and selective transport of cations due to the enhanced electrostatic interaction between the permeating ions and MOFs. While osmotic energy conversion, 860 nm thick negatively charged PSS@MOFs composite membrane achieves an ultrahigh cation transfer number of 0.993 and energy conversion efficiency of 48.8% at a 100-fold salinity gradient. Moreover, a large output power of 2.90 µW has been achieved with an ultra-low internal resistance of 999 Ω, employing an effective area of 12.56 mm2. This work presents a promising strategy to construct a high-performance MOFs-based osmotic energy harvesting system for practical applications.
中文翻译:
原位掺入带电分子的电沉积 MOF 膜用于渗透能量收集
离子选择性膜被认为是渗透能量收集的有前途的候选者。然而,高选择性渗透膜的制造是主要挑战。沿着功能性带电基团具有明确定义的纳米通道的金属有机骨架 (MOF) 显示出解决这个问题的重要性。在这里,通过原位阳极电沉积工艺在多孔阳极氧化铝 (AAO) 膜上开发了一系列致密聚苯乙烯磺酸钠 (PSS) 结合的 MOFs 复合膜 (PSS@MOFs)。得益于受限银层的新颖结构设计,PSS@MOFs形成了缺陷较少的致密复合膜。由于渗透离子和 MOFs 之间增强的静电相互作用,PSS@MOFs 复合膜的磺化纳米通道提供了快速和选择性的阳离子传输。在渗透能量转换的同时,860 nm 厚带负电荷的 PSS@MOFs 复合膜在 100 倍盐度梯度下实现了 0.993 的超高阳离子转移数和 48.8% 的能量转换效率。此外,还实现了 2.90 µW 的大输出功率和 999 Ω 的超低内阻,有效面积为 12.56 mm22 . 这项工作提出了一种有前途的策略来构建用于实际应用的高性能基于 MOF 的渗透能量收集系统。
更新日期:2023-02-01
中文翻译:
原位掺入带电分子的电沉积 MOF 膜用于渗透能量收集
离子选择性膜被认为是渗透能量收集的有前途的候选者。然而,高选择性渗透膜的制造是主要挑战。沿着功能性带电基团具有明确定义的纳米通道的金属有机骨架 (MOF) 显示出解决这个问题的重要性。在这里,通过原位阳极电沉积工艺在多孔阳极氧化铝 (AAO) 膜上开发了一系列致密聚苯乙烯磺酸钠 (PSS) 结合的 MOFs 复合膜 (PSS@MOFs)。得益于受限银层的新颖结构设计,PSS@MOFs形成了缺陷较少的致密复合膜。由于渗透离子和 MOFs 之间增强的静电相互作用,PSS@MOFs 复合膜的磺化纳米通道提供了快速和选择性的阳离子传输。在渗透能量转换的同时,860 nm 厚带负电荷的 PSS@MOFs 复合膜在 100 倍盐度梯度下实现了 0.993 的超高阳离子转移数和 48.8% 的能量转换效率。此外,还实现了 2.90 µW 的大输出功率和 999 Ω 的超低内阻,有效面积为 12.56 mm22 . 这项工作提出了一种有前途的策略来构建用于实际应用的高性能基于 MOF 的渗透能量收集系统。