Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Merging Platinum Single Atoms to Achieve Ultrahigh Mass Activity and Low Hydrogen Production Cost
ACS Nano ( IF 15.8 ) Pub Date : 2023-02-01 , DOI: 10.1021/acsnano.2c11338 Feng Li 1, 2 , Do Hyung Kweon 2 , Gao-Feng Han 2 , Hyuk-Jun Noh 2 , Wei Che 2 , Ishfaq Ahmad 2 , Hu Young Jeong 3 , Zhengping Fu 4 , Yalin Lu 4 , Jong-Beom Baek 2
ACS Nano ( IF 15.8 ) Pub Date : 2023-02-01 , DOI: 10.1021/acsnano.2c11338 Feng Li 1, 2 , Do Hyung Kweon 2 , Gao-Feng Han 2 , Hyuk-Jun Noh 2 , Wei Che 2 , Ishfaq Ahmad 2 , Hu Young Jeong 3 , Zhengping Fu 4 , Yalin Lu 4 , Jong-Beom Baek 2
Affiliation
Single atom catalysts (SACs) with isolated active sites exhibit the highest reported mass activity for hydrogen evolution catalysis, which is crucial for practical applications. Here, we demonstrate that ultrahigh mass activity can also be achieved by rationally merging the isolated platinum (Pt) active sites in SAC. The catalyst was obtained by the thermodynamically driven diffusing and merging phosphorus-doped carbon (PC) supported Pt single atoms (Pt1@PC) into Pt nanoclusters (PtM@PC). X-ray absorption spectroscopy analysis revealed that the merged nanoclusters exhibit much stronger interactions with the support than the traditional method, enabling more efficient electron transfer. The optimized PtM@PC exhibited an order of magnitude higher mass activity (12.7 A mgPt–1) than Pt1@PC (0.9 A mgPt–1) at an overpotential of 10 mV in acidic media, which is the highest record to date, far exceeding reports for other outstanding SACs. Theoretical study revealed that the collective active sites in PtM@PC exhibit both favorable hydrogen binding energy and fast reaction kinetics, leading to the significantly enhanced mass activity. Despite its low Pt content (2.2 wt %), a low hydrogen production cost of ∼3 USD kg–1 was finally achieved in the full-water splitting at a laboratory scale.
中文翻译:
合并铂单原子以实现超高质量活性和低制氢成本
具有孤立活性位点的单原子催化剂 (SAC) 表现出最高的析氢催化质量活性,这对于实际应用至关重要。在这里,我们证明了通过合理合并 SAC 中孤立的铂 (Pt) 活性位点也可以实现超高质量活性。该催化剂是通过热力学驱动扩散和合并磷掺杂碳 (PC) 负载的 Pt 单原子 (Pt 1 @PC) 到 Pt 纳米团簇 (Pt M @PC) 中获得的。X 射线吸收光谱分析表明,合并的纳米团簇与载体的相互作用比传统方法强得多,从而实现更有效的电子转移。优化的 Pt M@PC 在酸性介质中在 10 mV 的过电势下表现出比 Pt 1 @PC(0.9 A mg Pt –1 )高一个数量级的质量活性(12.7 A mg Pt –1),这是迄今为止的最高记录超过其他优秀 SAC 的报告。理论研究表明,Pt M @PC中的集体活性位点表现出有利的氢结合能和快速反应动力学,导致质量活性显着增强。尽管其 Pt 含量低(2.2 wt%),但在实验室规模的全水分解中最终实现了约 3 美元 kg –1的低制氢成本。
更新日期:2023-02-01
中文翻译:
合并铂单原子以实现超高质量活性和低制氢成本
具有孤立活性位点的单原子催化剂 (SAC) 表现出最高的析氢催化质量活性,这对于实际应用至关重要。在这里,我们证明了通过合理合并 SAC 中孤立的铂 (Pt) 活性位点也可以实现超高质量活性。该催化剂是通过热力学驱动扩散和合并磷掺杂碳 (PC) 负载的 Pt 单原子 (Pt 1 @PC) 到 Pt 纳米团簇 (Pt M @PC) 中获得的。X 射线吸收光谱分析表明,合并的纳米团簇与载体的相互作用比传统方法强得多,从而实现更有效的电子转移。优化的 Pt M@PC 在酸性介质中在 10 mV 的过电势下表现出比 Pt 1 @PC(0.9 A mg Pt –1 )高一个数量级的质量活性(12.7 A mg Pt –1),这是迄今为止的最高记录超过其他优秀 SAC 的报告。理论研究表明,Pt M @PC中的集体活性位点表现出有利的氢结合能和快速反应动力学,导致质量活性显着增强。尽管其 Pt 含量低(2.2 wt%),但在实验室规模的全水分解中最终实现了约 3 美元 kg –1的低制氢成本。