当前位置:
X-MOL 学术
›
Carbon Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tightened 1D/3D carbon heterostructure infiltrating phase change materials for solar–thermoelectric energy harvesting: Faster and better
Carbon Energy ( IF 19.5 ) Pub Date : 2023-01-31 , DOI: 10.1002/cey2.281 Zhaodi Tang 1 , Piao Cheng 2, 3 , Panpan Liu 2 , Yan Gao 1 , Xiao Chen 2 , Ge Wang 1, 4
Carbon Energy ( IF 19.5 ) Pub Date : 2023-01-31 , DOI: 10.1002/cey2.281 Zhaodi Tang 1 , Piao Cheng 2, 3 , Panpan Liu 2 , Yan Gao 1 , Xiao Chen 2 , Ge Wang 1, 4
Affiliation
Extensive use of thermal energy in daily life is ideal for reducing carbon emissions to achieve carbon neutrality; however, the effective collection of thermal energy is a major hurdle. Thermoelectric (TE) conversion technology based on the Seebeck effect and thermal energy storage technology based on phase change materials (PCMs) represent smart, feasible, and research-worthy approaches to overcome this hurdle. However, the integration of multiple thermal energy sources freely existing in the environment for storage and output of thermal and electrical energy simultaneously still remains a huge challenge. Herein, three-dimensional (3D) nanostructured metal–organic frameworks (MOFs) are in situ nucleated and grown onto carbon nanotubes (CNTs) via coordination bonding. After calcination, the prepared core–shell structural CNTs@MOFs are transformed into tightened 1D/3D carbon heterostructure loading Co nanoparticles for efficient solar–thermoelectric energy harvesting. Surprisingly, the corresponding composite PCMs show a record-breaking solar–thermal conversion efficiency of 98.1% due to the tightened carbon heterostructure and the local surface plasmon resonance effect of Co nanoparticles. Moreover, our designed all-in-one composite PCMs are also capable of creating an electrical potential of 0.5 mV based on the Seebeck effect without a TE generator. This promising approach can store thermal and electrical energy simultaneously, providing a new direction in the design of advanced all-in-one multifunctional PCMs for thermal energy storage and utilization.
中文翻译:
用于太阳能-热电能量收集的致密 1D/3D 碳异质结构渗透相变材料:更快更好
日常生活中广泛利用热能是减少碳排放、实现碳中和的理想选择;然而,有效收集热能是一个主要障碍。基于塞贝克效应的热电(TE)转换技术和基于相变材料(PCM)的热能存储技术代表了克服这一障碍的智能、可行且值得研究的方法。然而,整合环境中自由存在的多种热能源以同时存储和输出热能和电能仍然是一个巨大的挑战。在此,三维(3D)纳米结构金属有机框架(MOF)通过配位键原位成核并生长到碳纳米管(CNT)上。煅烧后,将制备的核壳结构 CNT@MOF 转化为紧致的 1D/3D 碳异质结构负载 Co 纳米颗粒,以实现高效的太阳能-热电能量收集。令人惊讶的是,由于致密的碳异质结构和Co纳米颗粒的局域表面等离子体共振效应,相应的复合相变材料显示出破纪录的98.1%的光热转换效率。此外,我们设计的一体式复合 PCM 还能够在没有 TE 发生器的情况下基于塞贝克效应产生 0.5 mV 的电势。这种有前景的方法可以同时存储热能和电能,为先进的一体化多功能相变材料的热能存储和利用设计提供了新的方向。
更新日期:2023-01-31
中文翻译:
用于太阳能-热电能量收集的致密 1D/3D 碳异质结构渗透相变材料:更快更好
日常生活中广泛利用热能是减少碳排放、实现碳中和的理想选择;然而,有效收集热能是一个主要障碍。基于塞贝克效应的热电(TE)转换技术和基于相变材料(PCM)的热能存储技术代表了克服这一障碍的智能、可行且值得研究的方法。然而,整合环境中自由存在的多种热能源以同时存储和输出热能和电能仍然是一个巨大的挑战。在此,三维(3D)纳米结构金属有机框架(MOF)通过配位键原位成核并生长到碳纳米管(CNT)上。煅烧后,将制备的核壳结构 CNT@MOF 转化为紧致的 1D/3D 碳异质结构负载 Co 纳米颗粒,以实现高效的太阳能-热电能量收集。令人惊讶的是,由于致密的碳异质结构和Co纳米颗粒的局域表面等离子体共振效应,相应的复合相变材料显示出破纪录的98.1%的光热转换效率。此外,我们设计的一体式复合 PCM 还能够在没有 TE 发生器的情况下基于塞贝克效应产生 0.5 mV 的电势。这种有前景的方法可以同时存储热能和电能,为先进的一体化多功能相变材料的热能存储和利用设计提供了新的方向。