当前位置:
X-MOL 学术
›
Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nickel Cobalt LDH/Graphene Film on Nickel-Foam-Supported Ternary Transition Metal Oxides for Supercapacitor Applications
Energy & Fuels ( IF 5.2 ) Pub Date : 2023-01-31 , DOI: 10.1021/acs.energyfuels.2c03040 Amir Mohammad Ghadimi 1 , Shahram Ghasemi 1 , Abdollah Omrani 1 , Farimah Mousavi 1
Energy & Fuels ( IF 5.2 ) Pub Date : 2023-01-31 , DOI: 10.1021/acs.energyfuels.2c03040 Amir Mohammad Ghadimi 1 , Shahram Ghasemi 1 , Abdollah Omrani 1 , Farimah Mousavi 1
Affiliation
Layered double hydroxides (LDHs) of transition metals have attained significant attention for supercapacitor applications due to their excellent charge storage, low internal resistance, and superior electrochemical stability. Here, a nanocomposite of reduced graphene oxide/nickel cobalt layered double hydroxide (rGO/NiCo LDH) on the surface of nickel foam (NF) containing hierarchical nickel cobalt copper transition metal oxides (TMOs) is prepared through two-step processes of electrochemical and coprecipitation methods. The TMOs/rGO/NiCo LDH nanocomposite is characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman, X-ray energy-dispersive (EDS), and X-ray photoelectron (XPS) spectroscopies as well as by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), elemental mapping analysis, nitrogen adsorption/desorption, and contact angle measurements. The supercapacitive behavior of the electrodes has been investigated through cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) measurements, and electrochemical impedance spectroscopy (EIS). The study has shown that the synergetic effect and the electrochemical properties have considerably improved when the layered double hydroxides are synthesized in the presence of rGO. The TMOs/rGO/NiCo LDH nanocomposite exhibits an excellent specific capacitance of 2763 F g–1 at a current density of 1 A g–1 and a stability of 85% after 3000 GCD cycles at a current density of 24 A g–1. Also, a TMOs/rGO/NiCo LDH//rGO asymmetric supercapacitor device is constructed with an aqueous KOH electrolyte, which shows a capacitance of 244 F g–1 at a current density of 1 A g–1. The device attains the highest energy density of 34 Wh kg–1 and power density of 2500 W kg–1, with an excellent cycling stability of 100% after 3000 GCD cycles at a current density of 10 A g–1.
中文翻译:
用于超级电容器应用的镍泡沫负载的三元过渡金属氧化物上的镍钴 LDH/石墨烯薄膜
过渡金属的层状双氢氧化物 (LDH) 由于其出色的电荷存储、低内阻和优异的电化学稳定性而在超级电容器应用中引起了极大的关注。在这里,通过电化学和镍钴铜过渡金属氧化物(TMOs)两步法制备了在含有分级镍钴铜过渡金属氧化物(TMOs)的泡沫镍(NF)表面上的还原氧化石墨烯/镍钴层状双氢氧化物(rGO/NiCo LDH)的纳米复合材料。共沉淀法。TMOs/rGO/NiCo LDH 纳米复合材料的特征在于 X 射线衍射 (XRD)、傅里叶变换红外 (FTIR)、拉曼、X 射线能量色散 (EDS) 和 X 射线光电子 (XPS) 光谱以及通过透射电子显微镜 (TEM)、场发射扫描电子显微镜 (FE-SEM)、元素映射分析、氮气吸附/解吸和接触角测量。通过循环伏安法 (CV)、恒电流充放电 (GCD) 测量和电化学阻抗谱 (EIS) 研究了电极的超级电容行为。研究表明,在 rGO 存在下合成层状双氢氧化物时,协同效应和电化学性能得到显着改善。TMOs/rGO/NiCo LDH 纳米复合材料表现出 2763 F g 的优异比电容 研究表明,在 rGO 存在下合成层状双氢氧化物时,协同效应和电化学性能得到显着改善。TMOs/rGO/NiCo LDH 纳米复合材料表现出 2763 F g 的优异比电容 研究表明,在 rGO 存在下合成层状双氢氧化物时,协同效应和电化学性能得到显着改善。TMOs/rGO/NiCo LDH 纳米复合材料表现出 2763 F g 的优异比电容–1在 1 A g –1的电流密度下,在 24 A g –1的电流密度下经过 3000 次 GCD 循环后稳定性为 85% 。此外,TMOs/rGO/NiCo LDH//rGO 不对称超级电容器装置由 KOH 水溶液构成,在 1 A g –1的电流密度下显示出 244 F g –1的电容。该器件的最高能量密度为 34 Wh kg –1,功率密度为 2500 W kg –1,在 10 A g –1的电流密度下经过 3000 次 GCD 循环后具有 100% 的出色循环稳定性。
更新日期:2023-01-31
中文翻译:
用于超级电容器应用的镍泡沫负载的三元过渡金属氧化物上的镍钴 LDH/石墨烯薄膜
过渡金属的层状双氢氧化物 (LDH) 由于其出色的电荷存储、低内阻和优异的电化学稳定性而在超级电容器应用中引起了极大的关注。在这里,通过电化学和镍钴铜过渡金属氧化物(TMOs)两步法制备了在含有分级镍钴铜过渡金属氧化物(TMOs)的泡沫镍(NF)表面上的还原氧化石墨烯/镍钴层状双氢氧化物(rGO/NiCo LDH)的纳米复合材料。共沉淀法。TMOs/rGO/NiCo LDH 纳米复合材料的特征在于 X 射线衍射 (XRD)、傅里叶变换红外 (FTIR)、拉曼、X 射线能量色散 (EDS) 和 X 射线光电子 (XPS) 光谱以及通过透射电子显微镜 (TEM)、场发射扫描电子显微镜 (FE-SEM)、元素映射分析、氮气吸附/解吸和接触角测量。通过循环伏安法 (CV)、恒电流充放电 (GCD) 测量和电化学阻抗谱 (EIS) 研究了电极的超级电容行为。研究表明,在 rGO 存在下合成层状双氢氧化物时,协同效应和电化学性能得到显着改善。TMOs/rGO/NiCo LDH 纳米复合材料表现出 2763 F g 的优异比电容 研究表明,在 rGO 存在下合成层状双氢氧化物时,协同效应和电化学性能得到显着改善。TMOs/rGO/NiCo LDH 纳米复合材料表现出 2763 F g 的优异比电容 研究表明,在 rGO 存在下合成层状双氢氧化物时,协同效应和电化学性能得到显着改善。TMOs/rGO/NiCo LDH 纳米复合材料表现出 2763 F g 的优异比电容–1在 1 A g –1的电流密度下,在 24 A g –1的电流密度下经过 3000 次 GCD 循环后稳定性为 85% 。此外,TMOs/rGO/NiCo LDH//rGO 不对称超级电容器装置由 KOH 水溶液构成,在 1 A g –1的电流密度下显示出 244 F g –1的电容。该器件的最高能量密度为 34 Wh kg –1,功率密度为 2500 W kg –1,在 10 A g –1的电流密度下经过 3000 次 GCD 循环后具有 100% 的出色循环稳定性。