当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Configurational Entropy-Enabled Thermostability of Cell Membranes in Extremophiles: From Molecular Mechanism to Bioinspired Design
Nano Letters ( IF 9.6 ) Pub Date : 2023-01-30 , DOI: 10.1021/acs.nanolett.2c04939 Ziyang Xu 1 , Guoqiang Liu 2 , Lijuan Gao 1 , Duo Xu 1 , Haixiao Wan 1 , Xiaobin Dai 1 , Xuanyu Zhang 1 , Lei Tao 2 , Li-Tang Yan 1
Nano Letters ( IF 9.6 ) Pub Date : 2023-01-30 , DOI: 10.1021/acs.nanolett.2c04939 Ziyang Xu 1 , Guoqiang Liu 2 , Lijuan Gao 1 , Duo Xu 1 , Haixiao Wan 1 , Xiaobin Dai 1 , Xuanyu Zhang 1 , Lei Tao 2 , Li-Tang Yan 1
Affiliation
Understanding physicochemical interactions and mechanisms related to the cell membranes of lives under extreme conditions is of essential importance but remains scarcely explored. Here, using a combination of computer simulations and experiments, we demonstrate that the structural integrity and controllable permeability of cell membranes at high temperatures are predominantly directed by configurational entropy emerging from distorted intermolecular organization of bipolar tethered lipids peculiar to the extremophiles. Detailed simulations across multiple scales─from an all-atom exploration of molecular mechanism to a mesoscale examination of its universal nature─suggest that this configurational entropy effect can be generalized to diverse systems, such as block copolymers. This offers biomimetic inspiration for designing heat-tolerant materials based on entropy, as validated by our experiments of synthetic polymers. The findings provide new insight into the basic nature of the mechanism underlying the adaptation of organisms to extreme conditions and might open paths for designed materials inspired by entropic effects in biological systems.
中文翻译:
极端微生物细胞膜的构型熵启用的热稳定性:从分子机制到仿生设计
了解极端条件下与生命细胞膜相关的物理化学相互作用和机制至关重要,但仍鲜有探索。在这里,结合使用计算机模拟和实验,我们证明了高温下细胞膜的结构完整性和可控渗透性主要受极端微生物特有的双极系链脂质分子间组织扭曲所产生的构型熵的指导。跨多个尺度的详细模拟——从分子机制的全原子探索到其普遍性质的中尺度检查——表明这种构型熵效应可以推广到不同的系统,例如嵌段共聚物。正如我们的合成聚合物实验所验证的那样,这为基于熵设计耐热材料提供了仿生灵感。这些发现为生物体适应极端条件的机制的基本性质提供了新的见解,并可能为受生物系统熵效应启发的设计材料开辟道路。
更新日期:2023-01-30
中文翻译:
极端微生物细胞膜的构型熵启用的热稳定性:从分子机制到仿生设计
了解极端条件下与生命细胞膜相关的物理化学相互作用和机制至关重要,但仍鲜有探索。在这里,结合使用计算机模拟和实验,我们证明了高温下细胞膜的结构完整性和可控渗透性主要受极端微生物特有的双极系链脂质分子间组织扭曲所产生的构型熵的指导。跨多个尺度的详细模拟——从分子机制的全原子探索到其普遍性质的中尺度检查——表明这种构型熵效应可以推广到不同的系统,例如嵌段共聚物。正如我们的合成聚合物实验所验证的那样,这为基于熵设计耐热材料提供了仿生灵感。这些发现为生物体适应极端条件的机制的基本性质提供了新的见解,并可能为受生物系统熵效应启发的设计材料开辟道路。