当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers
Nano Letters ( IF 9.6 ) Pub Date : 2015-03-19 00:00:00 , DOI: 10.1021/acs.nanolett.5b00600 Wei Liu 1 , Nian Liu 1 , Jie Sun 1 , Po-Chun Hsu 1 , Yuzhang Li 1 , Hyun-Wook Lee 1 , Yi Cui 1, 2
Nano Letters ( IF 9.6 ) Pub Date : 2015-03-19 00:00:00 , DOI: 10.1021/acs.nanolett.5b00600 Wei Liu 1 , Nian Liu 1 , Jie Sun 1 , Po-Chun Hsu 1 , Yuzhang Li 1 , Hyun-Wook Lee 1 , Yi Cui 1, 2
Affiliation
Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 × 10–4 S cm–1 at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.
中文翻译:
陶瓷纳米线填料增强聚合物电解质的离子电导率
与传统的液体电解质相比,固态电解质大大改善了锂离子电池的安全性和电化学稳定性,这使其成为下一代高能电池的有前途的替代技术。当前,锂离子在固体电解质中的低迁移率限制了它们的实际应用。过去几十年来正在进行的有关将陶瓷纳米颗粒分散到聚合物基质中的研究被证明可以有效地提高离子电导率,尽管与纳米颗粒形成离子电导的效率网络是一项挑战。在这项工作中,我们首先报道陶瓷纳米线填料可以促进在聚合物基固体电解质中此类离子传导网络的形成,从而将其离子传导率提高三个数量级。4掺有15 wt%的Li 0.33 La 0.557 TiO 3纳米线复合电解质在室温下表现出前所未有的离子电导率2.4×10 –4 S cm –1,这归因于陶瓷纳米线表面上的快速离子传输。聚合物基质中的导电网络。另外,与没有填料的电解质相比,陶瓷-纳米线填充的复合聚合物电解质显示出更大的电化学稳定性窗口。本工作中的发现为设计具有优异性能的固体离子电解质铺平了道路。
更新日期:2015-03-19
中文翻译:
陶瓷纳米线填料增强聚合物电解质的离子电导率
与传统的液体电解质相比,固态电解质大大改善了锂离子电池的安全性和电化学稳定性,这使其成为下一代高能电池的有前途的替代技术。当前,锂离子在固体电解质中的低迁移率限制了它们的实际应用。过去几十年来正在进行的有关将陶瓷纳米颗粒分散到聚合物基质中的研究被证明可以有效地提高离子电导率,尽管与纳米颗粒形成离子电导的效率网络是一项挑战。在这项工作中,我们首先报道陶瓷纳米线填料可以促进在聚合物基固体电解质中此类离子传导网络的形成,从而将其离子传导率提高三个数量级。4掺有15 wt%的Li 0.33 La 0.557 TiO 3纳米线复合电解质在室温下表现出前所未有的离子电导率2.4×10 –4 S cm –1,这归因于陶瓷纳米线表面上的快速离子传输。聚合物基质中的导电网络。另外,与没有填料的电解质相比,陶瓷-纳米线填充的复合聚合物电解质显示出更大的电化学稳定性窗口。本工作中的发现为设计具有优异性能的固体离子电解质铺平了道路。