当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modulating Electronic Structure to Improve the Solar to Hydrogen Efficiency of Cobalt Nitride with Lattice Doping
ACS Catalysis ( IF 11.3 ) Pub Date : 2023-01-26 , DOI: 10.1021/acscatal.2c05075 Siqi Liu 1 , Weiliang Qi 1, 2 , Jue Liu 3 , Xiangjian Meng 2 , Samira Adimi 2 , J. Paul Attfield 4 , Minghui Yang 1, 2
ACS Catalysis ( IF 11.3 ) Pub Date : 2023-01-26 , DOI: 10.1021/acscatal.2c05075 Siqi Liu 1 , Weiliang Qi 1, 2 , Jue Liu 3 , Xiangjian Meng 2 , Samira Adimi 2 , J. Paul Attfield 4 , Minghui Yang 1, 2
Affiliation
Development of state-of-the-art catalytic systems for highly efficient solar to hydrogen energy conversion is desirable but remains a challenge. In this work, transition metal (M = V, Mo, and W) doped cobalt nitride has been synthesized for solar to hydrogen energy conversion. Neutron diffraction results suggest that the composition of our as-prepared cobalt nitride is Co3.75N0.14, which contains many lattice defects. Neutron pair distribution function (PDF) analysis confirms the structural defects and lattice distortion in M-Co3.75N0.14. The M-doping is demonstrated to tune the electronic structure and properties of Co3.75N0.14 due to the formation of M–N bonds, which significantly improves charge carrier separation efficiency and the reaction kinetics. Density functional theory (DFT) calculations suggest that the d-band center of the doped cobalt nitrides exhibit downshifts compared to pure cobalt nitride. This is beneficial for the desorption of hydrogen atoms, promoting hydrogen evolution activity. The hydrogen evolution rate of the optimal V–Co3.75N0.14-Eosin-Y system reaches 21.21 μmol·mg–1·h–1, with quantum efficiency around 38% at 405 nm excitation wavelength. This remarkable value surpasses those reported for other hybrid photocatalysts.
中文翻译:
晶格掺杂调制电子结构提高氮化钴太阳能制氢效率
开发用于高效太阳能到氢能转换的最先进催化系统是可取的,但仍然是一个挑战。在这项工作中,合成了过渡金属(M = V、Mo 和 W)掺杂的氮化钴,用于将太阳能转化为氢能。中子衍射结果表明,我们制备的氮化钴的成分为Co 3.75 N 0.14,其中含有许多晶格缺陷。中子对分布函数 (PDF) 分析证实了 M-Co 3.75 N 0.14中的结构缺陷和晶格畸变。证明 M 掺杂可调节 Co 3.75 N 0.14的电子结构和性质由于 M-N 键的形成,这显着提高了载流子分离效率和反应动力学。密度泛函理论 (DFT) 计算表明,与纯氮化钴相比,掺杂氮化钴的 d 带中心表现出下移。这有利于氢原子的脱附,促进析氢活性。最优V–Co 3.75 N 0.14 -Eosin-Y体系的析氢速率达到21.21 μmol·mg –1 ·h –1,在405 nm激发波长下量子效率约为38%。这个显着的价值超过了其他混合光催化剂的报道。
更新日期:2023-01-26
中文翻译:
晶格掺杂调制电子结构提高氮化钴太阳能制氢效率
开发用于高效太阳能到氢能转换的最先进催化系统是可取的,但仍然是一个挑战。在这项工作中,合成了过渡金属(M = V、Mo 和 W)掺杂的氮化钴,用于将太阳能转化为氢能。中子衍射结果表明,我们制备的氮化钴的成分为Co 3.75 N 0.14,其中含有许多晶格缺陷。中子对分布函数 (PDF) 分析证实了 M-Co 3.75 N 0.14中的结构缺陷和晶格畸变。证明 M 掺杂可调节 Co 3.75 N 0.14的电子结构和性质由于 M-N 键的形成,这显着提高了载流子分离效率和反应动力学。密度泛函理论 (DFT) 计算表明,与纯氮化钴相比,掺杂氮化钴的 d 带中心表现出下移。这有利于氢原子的脱附,促进析氢活性。最优V–Co 3.75 N 0.14 -Eosin-Y体系的析氢速率达到21.21 μmol·mg –1 ·h –1,在405 nm激发波长下量子效率约为38%。这个显着的价值超过了其他混合光催化剂的报道。