当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Doped Graphene To Mimic the Bacterial NADH Oxidase for One-Step NAD+ Supplementation in Mammals
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-01-26 , DOI: 10.1021/jacs.2c12336
Xi Liu 1 , Jingkun Li 2 , Andrea Zitolo 3 , Meng Gao 1 , Jun Jiang 1 , Xiangtian Geng 4 , Qianqian Xie 1 , Di Wu 1 , Huizhen Zheng 1 , Xiaoming Cai 4 , Jianmei Lu 5 , Frédéric Jaouen 6 , Ruibin Li 1
Affiliation  

Nicotinamide adenine dinucleotide (NAD) is a critical regulator of metabolic networks, and declining levels of its oxidized form, NAD+, are closely associated with numerous diseases. While supplementing cells with precursors needed for NAD+ synthesis has shown poor efficacy in combatting NAD+ decline, an alternative strategy is the development of synthetic materials that catalyze the oxidation of NADH into NAD+, thereby taking over the natural role of the NADH oxidase (NOX) present in bacteria. Herein, we discovered that metal-nitrogen-doped graphene (MNGR) materials can catalyze the oxidation of NADH into NAD+. Among MNGR materials with different transition metals, Fe-, Co-, and Cu-NGR displayed strong catalytic activity combined with >80% conversion of NADH into NAD+, similar specificity to NOX for abstracting hydrogen from the pyridine ring of nicotinamide, and higher selectivity than 51 other nanomaterials. The NOX-like activity of FeNGR functioned well in diverse cell lines. As a proof of concept of the in vivo application, we showed that FeNGR could specifically target the liver and remedy the metabolic flux anomaly in obesity mice with NAD+-deficient cells. Overall, our study provides a distinct insight for exploration of drug candidates by design of synthetic materials to mimic the functions of unique enzymes (e.g., NOX) in bacteria.

中文翻译:

掺杂石墨烯模拟细菌 NADH 氧化酶,在哺乳动物中一步补充 NAD+

烟酰胺腺嘌呤二核苷酸 (NAD) 是代谢网络的关键调节剂,其氧化形式 NAD +水平下降与多种疾病密切相关。虽然用 NAD +合成所需的前体补充细胞在对抗 NAD +下降方面表现不佳,但另一种策略是开发合成材料,将 NADH 氧化成 NAD +,从而接管 NADH 氧化酶的天然作用( NOX) 存在于细菌中。在此,我们发现金属氮掺杂石墨烯(MNGR)材料可以催化NADH氧化成NAD +. 在具有不同过渡金属的 MNGR 材料中,Fe-、Co- 和 Cu-NGR 表现出很强的催化活性,同时 NADH 转化为 NAD +的转化率 >80% ,与 NOX 相似的从烟酰胺吡啶环中提取氢的特异性,以及更高的选择性高于其他 51 种纳米材料。FeNGR 的 NOX 样活性在不同的细胞系中发挥良好作用。作为体内应用概念的证明,我们证明了 FeNGR 可以特异性靶向肝脏并修复具有 NAD +缺陷细胞的肥胖小鼠的代谢通量异常。总的来说,我们的研究通过设计合成材料来模拟细菌中独特酶(例如,NOX)的功能,为探索候选药物提供了独特的见解。
更新日期:2023-01-26
down
wechat
bug