当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogel Polymer–PBA Nanocomposite Thin Film-Based Bifunctional Catalytic Electrode for Water Splitting: The Unique Role of the Polymer Matrix in Enhancing the Electrocatalytic Efficiency
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-01-25 , DOI: 10.1021/acsami.2c18006
Thangavelu Dhanasekaran 1 , Anu Bovas 1 , T P Radhakrishnan 1
Affiliation  

A novel approach to efficient bifunctional catalytic electrodes for water splitting is developed, based on a counterintuitive choice of an insulating hydrogel polymer (chitosan, CS)–Prussian blue analogue (PBA, KCoFe) nanocomposite thin film on nickel foam. The polymer matrix in KCoFe-CS enables the formation of framelike structures of the non-noble metal-based catalyst nanocrystals, in addition to improving their stability. An optimized cycling protocol leads to a substantial enhancement of the electrocatalytic efficiency for oxygen evolution reaction (OER) as well as hydrogen evolution reaction (HER), achieving relatively low overpotentials of 272 and 320 mV (@ 10 and 20 mA cm–2) and 146 mV (@ 10 mA cm–2), respectively, reduced Tafel slopes, and increased Faradaic efficiencies of 98 and 96%; the overpotentials estimated based on the electrochemically active surface area show similar trends. The polymer encapsulation and the cycling protocol are key to the realization of the desirable combination of enhanced efficiency and stability demonstrated up to 50 h for both OER and HER. Detailed characterizations of the postcycling catalytic electrode show that favorable morphological changes of the polymer matrix with concomitant reduction in the PBA nanocrystal size lead to the enhanced activity. The bifunctional activity of the catalytic electrode is demonstrated by the stable water splitting achieved with a 20 mA cm–2 current density at 1.55 V. The present study unravels the utility of hydrogel polymer matrices (without the use of binders like Nafion) in realizing sustainable water splitting electrocatalysts with high stability and efficiency, through the combined effect of confining the electrolyte within and favorably modifying the catalyst nanoparticles and the nanocomposite morphology.

中文翻译:

基于水凝胶聚合物-PBA 纳米复合薄膜的双功能催化水分解电极:聚合物基质在提高电催化效率中的独特作用

基于泡沫镍上的绝缘水凝胶聚合物(壳聚糖,CS)-普鲁士蓝类似物(PBA,KCoFe)纳米复合薄膜的违反直觉的选择,开发了一种用于水分解的高效双功能催化电极的新方法。KCoFe-CS 中的聚合物基质除了提高其稳定性外,还能够形成非贵金属基催化剂纳米晶体的框架状结构。优化的循环方案可显着提高析氧反应 (OER) 和析氢反应 (HER) 的电催化效率,实现 272 和 320 mV(@ 10 和 20 mA cm –2)的相对较低的过电和146 毫伏(@ 10 毫安厘米–2),分别降低了塔菲尔斜率,并将法拉第效率提高了 98% 和 96%;基于电化学活性表面积估算的过电势显示出相似的趋势。聚合物封装和循环方案是实现 OER 和 HER 长达 50 小时的增强效率和稳定性的理想组合的关键。循环后催化电极的详细表征表明,随着 PBA 纳米晶体尺寸的减小,聚合物基质的有利形态变化导致活性增强。催化电极的双功能活性通过使用 20 mA cm –2实现的稳定水分解来证明电流密度为 1.55 V。本研究揭示了水凝胶聚合物基质(不使用 Nafion 等粘合剂)在实现具有高稳定性和高效率的可持续水分解电催化剂方面的实用性,通过将电解质限制在内部并有利地修改催化剂纳米粒子和纳米复合物形态。
更新日期:2023-01-25
down
wechat
bug