Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2023-01-13 , DOI: 10.1016/j.jallcom.2023.168880 Weiwei Jiang , Yahui Li , Junjie Li , Guoyu Ding , Yijie Zhan , Jiajia Peng , Xiaofei Yan , Xi Deng , Jiawei Tan , Jiawei Xu , Changxin Tang , Yu Dai , Fugen Sun
The oxygen doped MoS2 nanosheets were in-situ grown into the three-dimensional (3D) porous graphene frameworks (O-MoS2/G) through a facile hydrothermal method, and then used to coat the commercial PP separators for Li-S batteries. The relatively low hydrothermal temperature should be a key factor for achieving the O-doped MoS2. The O dopants could expand and disturb interlayer structures of MoS2 to produce abundant active edge sites for adsorption and catalytic conversion of polysulfides. Moreover, the basal planes of MoS2 should be also activated by the O doping and exhibit enhanced chemical adsorption strength towards polysulfides for propelling electrochemical conversion. Owing to the synergistic effects of the 3D porous graphene frameworks and the inlaid O-MoS2 nanosheets, the Li-S cells with high S areal loading cathodes and O-MoS2/G@PP separators exhibit excellent electrochemical performances with a high specific capacity of 1141 mAh g−1 at the 1st cycle at 0.1 C, reversible capacities of 772 mAh g−1 at the 50th cycle at 0.2 C and 583 mAh g−1 at the 100th cycle at 0.5 C. These encouraging results provide that the heteroatom doping should be a promising approach to improve the adsorption and catalytic activity of MoS2 for propelling the polysulfide conversion in Li-S batteries.
中文翻译:
O 掺杂在 MoS2 纳米片中诱导丰富的活性位点以促进锂硫电池的多硫化物转化
通过简便的水热法将氧掺杂的 MoS 2纳米片原位生长成三维 (3D) 多孔石墨烯框架 (O-MoS 2 /G),然后用于涂覆锂硫电池的商用 PP 隔膜. 相对较低的水热温度应该是实现 O 掺杂 MoS 2的关键因素。O掺杂剂可以扩展和扰乱MoS 2的层间结构,从而产生丰富的活性边缘位点,用于多硫化物的吸附和催化转化。此外,MoS 2的基面还应该被 O 掺杂激活,并对多硫化物表现出增强的化学吸附强度,以推动电化学转化。由于 3D 多孔石墨烯框架和镶嵌的 O-MoS 2纳米片的协同效应,具有高 S 面积负载阴极和 O-MoS 2 /G@PP 隔膜的 Li-S 电池表现出优异的电化学性能和高比容量在 0.1 C 下第一个循环时的可逆容量为 1141 mAh g -1 ,在 0.2 C 下第 50 个循环时的可逆容量为 772 mAh g -1和在 0.5 C 下第 100 个循环时的可逆容量为 583 mAh g -1。这些令人鼓舞的结果表明杂原子掺杂应该是提高 MoS2 吸附和催化活性的有前途的方法2用于推动Li-S电池中的多硫化物转化。