当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanostructured MoS2 with Interlayer Controllably Regulated by Ionic Liquids/Cellulose for High-Capacity and Durable Sodium Storage Properties
Small ( IF 13.0 ) Pub Date : 2023-01-24 , DOI: 10.1002/smll.202207397
Wenjie Tao 1 , Jianqiang Chen 1 , Chengjie Xu 1 , Shuai Liu 1 , Sandile Fakudze 1 , Jie Wang 2 , Chen Wang 1
Affiliation  

Low intrinsic conductivity and structural instability of MoS2 as an anode of sodium-ion batteries limit the liberation of its theoretical capacity. Herein, density functional theory simulations for the first time optimize MoS2 interlayer distance between 0.80 and 1.01 nm for sodium storage. 1-Butyl-3-methyl-imidazolium acetate ([BMIm]Ac) induces cellulose oligomers to intercalate MoS2 interlayers for achieving controllable distance by changing the mass ratio of cellulose to [BMIm]Ac. Based on these findings, porous carbon loading the interlayer-expanded MoS2 allowing Na+ to insert with fast kinetics is synthesized. A carbon layer derived from [BMIm]Ac and cellulose coating the composite prevents the MoS2 from contacting electrolytes, leading to less sulfur loss for a more reversible specific capacity. Meanwhile, MoS2 and carbon have a strong interfacial connection through MoN binding, contributing to enhanced structural stability. As expected, while cycling 250 times at 0.1 A g-1, the MoS2-porous carbon composite displays an optimal reversible capacity at 517.79 mAh g-1 as a sodium-ion batteries anode. The cyclic test of 1.0 A g-1 also shows considerable stability (310.74 mAh g-1 after 1000 cycles with 86.26% retentive capacity). This study will open up new possibilities of modifying MoS2 that serves as an applicable material as sodium-ion battery anode.

中文翻译:

具有由离子液体/纤维素可控调节的夹层的纳米结构二硫化钼具有高容量和持久的钠储存特性

作为钠离子电池负极的MoS 2低本征电导率和结构不稳定性限制了其理论容量的释放。在此,密度泛函理论模拟首次将 MoS 2层间距离优化为 0.80 和 1.01 nm 之间的钠存储。1-Butyl-3-methyl-imidazolium acetate ([BMIm]Ac) 诱导纤维素低聚物插入 MoS 2中间层,通过改变纤维素与 [BMIm]Ac 的质量比实现可控距离。基于这些发现,合成了负载层间膨胀的 MoS 2 的多孔碳,允许 Na +以快速动力学插入。源自 [BMIm]Ac 的碳层和覆盖复合材料的纤维素可防止 MoS2来自接触电解质,导致更少的硫损失以获得更可逆的比容量。同时,MoS 2和碳通过 Mo N 结合具有很强的界面连接,有助于提高结构稳定性。正如预期的那样,当以 0.1 A g -1循环 250 次时,MoS 2多孔碳复合材料作为钠离子电池阳极显示出 517.79 mAh g -1的最佳可逆容量。1.0 A g -1的循环测试也显示出相当大的稳定性(1000 次循环后为 310.74 mAh g -1,保持容量为 86.26%)。这项研究将为 MoS 2的修饰开辟新的可能性作为钠离子电池负极的适用材料。
更新日期:2023-01-24
down
wechat
bug