酪氨酰 DNA 磷酸二酯酶 I (Tdp1) 水解 DNA 两端的磷酸二酯连接的加合物。这包括拓扑异构酶 I (TOP1)-DNA 共价反应中间体,它是喜树碱类化疗药物的靶标。Tdp1 两步催化以使用两个催化组氨酸形成 Tdp1-DNA 共价复合物 (Tdp1cc) 为中心。在这里,我们检查了 Tdp1 的研究不足、结构未定义和保守性差的 N 末端结构域 (NTD) 在全长蛋白的背景下在其去除细胞中 TOP1cc 的能力中的作用。使用有毒的 Tdp1 突变体,我们观察到 NTD 对于 Tdp1 去除酵母中 TOP1-DNA 加合物的能力至关重要。全长和 N 末端截短的 Tdp1 突变体表现出相似的表达水平和细胞分布,但具有相反的 TOP1 依赖性毒性。单周转催化在全长和截短的催化突变体之间有显着差异,但在野生型酶之间没有显着差异,表明 Tdp1 突变体依赖于 NTD 进行催化。这些观察结果表明,NTD 在 Tdp1 活性的调节以及与蛋白质-DNA 加合物(例如细胞中的 TOP1cc)的相互作用中起着关键作用。我们建议 NTD 是一个调节域,并协调催化口袋内 DNA 加合物末端的稳定,以访问用于水解的磷酸二酯键。这些观察结果表明,NTD 在 Tdp1 活性的调节以及与蛋白质-DNA 加合物(例如细胞中的 TOP1cc)的相互作用中起着关键作用。我们建议 NTD 是一个调节域,并协调催化口袋内 DNA 加合物末端的稳定,以访问用于水解的磷酸二酯键。这些观察结果表明,NTD 在 Tdp1 活性的调节以及与蛋白质-DNA 加合物(例如细胞中的 TOP1cc)的相互作用中起着关键作用。我们建议 NTD 是一个调节域,并协调催化口袋内 DNA 加合物末端的稳定,以访问用于水解的磷酸二酯键。
"点击查看英文标题和摘要"
N-terminal domain of tyrosyl-DNA phosphodiesterase I regulates topoisomerase I-induced toxicity in cells
Tyrosyl-DNA phosphodiesterase I (Tdp1) hydrolyzes phosphodiester-linked adducts from both ends of DNA. This includes the topoisomerase I (TOP1)-DNA covalent reaction intermediate that is the target of the camptothecin class of chemotherapeutics. Tdp1 two-step catalysis is centered on the formation of a Tdp1-DNA covalent complex (Tdp1cc) using two catalytic histidines. Here, we examined the role of the understudied, structurally undefined, and poorly conserved N-terminal domain (NTD) of Tdp1 in context of full-length protein in its ability to remove TOP1cc in cells. Using toxic Tdp1 mutants, we observed that the NTD is critical for Tdp1’s ability to remove TOP1-DNA adducts in yeast. Full-length and N-terminal truncated Tdp1 mutants showed similar expression levels and cellular distribution yet an inversed TOP1-dependent toxicity. Single turnover catalysis was significantly different between full-length and truncated catalytic mutants but not wild-type enzyme, suggesting that Tdp1 mutants depend on the NTD for catalysis. These observations suggest that the NTD plays a critical role in the regulation of Tdp1 activity and interaction with protein-DNA adducts such as TOP1cc in cells. We propose that the NTD is a regulatory domain and coordinates stabilization of the DNA-adducted end within the catalytic pocket to access the phosphodiester linkage for hydrolysis.