当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Highly Damping and Self-Healable Ionic Elastomer from Dynamic Phase Separation of Sticky Fluorinated Polymers
Advanced Materials ( IF 27.4 ) Pub Date : 2023-01-20 , DOI: 10.1002/adma.202209581 Huai Xiang 1 , Xiaoxia Li 1 , Baohu Wu 2 , Shengtong Sun 1 , Peiyi Wu 1
Advanced Materials ( IF 27.4 ) Pub Date : 2023-01-20 , DOI: 10.1002/adma.202209581 Huai Xiang 1 , Xiaoxia Li 1 , Baohu Wu 2 , Shengtong Sun 1 , Peiyi Wu 1
Affiliation
Shock-induced low-frequency vibration damage is extremely harmful to bionic soft robots and machines that may incur the malfunction of fragile electronic elements. However, current skin-like self-healable ionic elastomers as the artificial sensing and protecting layer still lack the ability to dampen vibrations, due to their almost opposite design for molecular frictions to material's elasticity. Inspired by the two-phase structure of adipose tissue (the natural damping skin layer), here, a highly damping ionic elastomer with energy-dissipating nanophases embedded in an elastic matrix is introduced, which is formed by polymerization-induced dynamic phase separation of sticky fluorinated copolymers in the presence of lithium salts. Such a supramolecular design decouples the elastic and damping functions into two distinct phases, and thus reconciles a few intriguing properties including ionic conductivity, high stretchability, softness, strain-stiffening, elastic recovery, room-temperature self-healability, recyclability, and most importantly, record-high damping capacity at the human motion frequency range (loss factor tan δ > 1 at 0.1–50 Hz). This study opens the door for the artificial syntheses of high-performance damping ionic skins with robust sensing and protective applications in soft electronics and robotics.
中文翻译:
粘性氟化聚合物动态相分离的高阻尼和自修复离子弹性体
冲击引起的低频振动损坏对仿生软体机器人和机器极其有害,可能导致易碎电子元件发生故障。然而,目前作为人工传感和保护层的类皮肤自修复离子弹性体仍然缺乏抑制振动的能力,因为它们的分子摩擦设计与材料弹性几乎相反。受脂肪组织(天然阻尼皮层)的两相结构的启发,这里介绍了一种高阻尼离子弹性体,其具有嵌入弹性基质中的能量耗散纳米相,其通过聚合诱导的粘性动态相分离形成在锂盐存在下的氟化共聚物。这种超分子设计将弹性和阻尼功能分离为两个不同的阶段,从而调和了一些有趣的特性,包括离子导电性、高拉伸性、柔软性、应变硬化、弹性恢复、室温自愈性、可回收性,最重要的是,人体运动频率范围内创纪录的高阻尼能力(损耗因子tan δ > 1 在 0.1–50 赫兹)。这项研究为人工合成高性能阻尼离子皮肤打开了大门,在软电子和机器人技术中具有强大的传感和保护应用。
更新日期:2023-01-20
中文翻译:
粘性氟化聚合物动态相分离的高阻尼和自修复离子弹性体
冲击引起的低频振动损坏对仿生软体机器人和机器极其有害,可能导致易碎电子元件发生故障。然而,目前作为人工传感和保护层的类皮肤自修复离子弹性体仍然缺乏抑制振动的能力,因为它们的分子摩擦设计与材料弹性几乎相反。受脂肪组织(天然阻尼皮层)的两相结构的启发,这里介绍了一种高阻尼离子弹性体,其具有嵌入弹性基质中的能量耗散纳米相,其通过聚合诱导的粘性动态相分离形成在锂盐存在下的氟化共聚物。这种超分子设计将弹性和阻尼功能分离为两个不同的阶段,从而调和了一些有趣的特性,包括离子导电性、高拉伸性、柔软性、应变硬化、弹性恢复、室温自愈性、可回收性,最重要的是,人体运动频率范围内创纪录的高阻尼能力(损耗因子tan δ > 1 在 0.1–50 赫兹)。这项研究为人工合成高性能阻尼离子皮肤打开了大门,在软电子和机器人技术中具有强大的传感和保护应用。