Energy Storage Materials ( IF 18.9 ) Pub Date : 2023-01-20 , DOI: 10.1016/j.ensm.2023.01.030 Guijun Li , Jianping Liu , Chuanlan Xu , Hongdian Chen , Haonan Hu , Rong Jin , Lingtao Sun , Haifeng Chen , Chaozhong Guo , Honglin Li , Yujun Si
Non-noble iron-based single-atom catalysts (Fe-N-C) require more accessible active sites and rapid mass transportation, and spin state regulation of iron atoms is also key but challenging to synergistically improve the zinc-air battery (ZAB) performance. Thus, here we indicate that by pre-preparing a 3D nitrogen-doping carbon-sheet network from in situ gas-molecule cutting of bulk MOF and then adsorbing iron into defects and pores of this preformed matrix, we achieve a Fe-N-C catalyst with 14.78 wt.% iron existed as single-atom Fe-N4 sites neighboured Fe/Fe3C nanostructures. Electrons transfer to Fe3C/FeN4 from the adsorbed Fe atom and forms an electron-rich region around Fe3C, achieving the spin-state modulation of the d-band center of Fe atom in FeN4 through charges transfer. The calculation proves that d-band centers of spin-up/down for Fe in Fe-Fe3C/FeN4 are closer to the Fermi level than that of Fe3C/FeN4 (-1.51/-0.72 eV vs. -1.47/-0.65 eV), implying Fe site in Fe-Fe3C/FeN4 is more chemically active and is beneficial to the adsorption and reaction of O2 when involved in ORR. This catalyst delivers excellent ORR activity and the primary ZAB performance with the energy density (ED) of up to 1002 mWh g-1 Zn at 50 mA cm−2 and the maximum power density of 212 mW cm−2, especially in which it displays an excellent durability with 92.7% ED retention during a ∼150 h continuous discharge. These results highlight the significance of metal-atoms spin-state modulation by coupled active metal-species in hybrid catalysts for electrochemical energy devices.
中文翻译:
缺陷碳中 Fe/Fe3C 相邻的单个 Fe-N4 位点调节 Fe 自旋态可促进氧还原活性
非贵金属铁基单原子催化剂 (Fe-NC) 需要更易接近的活性位点和快速质量传输,铁原子的自旋态调节也是关键,但对协同提高锌空气电池 (ZAB) 性能具有挑战性。因此,在这里我们指出,通过从大块 MOF的原位气体分子切割中预先制备 3D 氮掺杂碳片网络,然后将铁吸附到该预先形成的基质的缺陷和孔隙中,我们实现了 Fe-NC 催化剂14.78 wt.% 的铁作为单原子 Fe-N 4位点与 Fe/Fe 3 C 纳米结构相邻存在。电子从吸附的 Fe 原子转移到 Fe 3 C/FeN 4并在 Fe 3周围形成富电子区域C、通过电荷转移实现FeN 4中Fe原子d带中心的自旋态调制。计算证明, Fe-Fe 3 C/FeN 4中Fe自旋向上/向下的d-能带中心比Fe 3 C /FeN 4更接近费米能级(-1.51/-0.72 eV vs - 1.47/-0.65 eV),说明Fe-Fe 3 C/FeN 4中的Fe位点化学活性更高,有利于O 2的吸附和反应当参与 ORR 时。该催化剂具有出色的 ORR 活性和主要 ZAB 性能,在 50 mA cm -2下的能量密度 (ED) 高达 1002 mWh g-1 Zn,最大功率密度为 212 mW cm -2,尤其是在它显示在约 150 小时的连续放电期间具有 92.7% 的 ED 保留率的出色耐久性。这些结果突出了在电化学能源设备的混合催化剂中通过耦合活性金属物种进行金属原子自旋态调制的重要性。