Fuel Processing Technology ( IF 7.2 ) Pub Date : 2023-01-18 , DOI: 10.1016/j.fuproc.2022.107647 Songbai Qiu , Zan Huang , Xuechun Sang , Yujia Liu , Qian Zhang , Quan Chen , Qingwei Meng , Tiejun Wang
Aqueous-phase hydrodeoxygenation (HDO) has been regarded as an efficient biorefinery strategy for sustainable production of gasoline-alkanes from bio-polyols. However, current research focuses mainly on exploiting noble-metal HDO catalysts to acquire straight-chain C5-C6 alkanes. Herein, the aqueous-phase HDO route was firstly proposed to regulate isomerization of gasoline-alkanes in the sorbitol hydrogenolysis utilizing non-noble Mo-based catalysts in a continuous-flow fixed-bed reactor. The selective reduction removal of hydroxyl groups and isomerization of carbon chains were strongly coupled together for boosting the octane value of gasoline-alkanes over the regenerable Ni@MoOx binary catalysts derived from NiMoO4 spinel. Further characterization studies revealed that the synergism of Ni0 and MoOx played a crucial role in regulating selective dissociation of CO bonds and rearrangement of CC bonds, and suppressing excessive cleavage of CC bonds toward C1-C4 alkanes and CO/CO2. The effects of reaction parameters including reaction temperature, H2-pressure and reduction temperature were also evaluated for manipulating the product distribution between n-alkanes and isoalkanes. After optimization, a high C5-C6 yield of 87.5% with 51.7% of C5-C6 isoalkanes mainly including cycloalkanes was achieved at 280 °C under H2-pressure of 1.0 MPa over the Ni@MoOx catalyst reduced at 500 °C. This catalytic strategy could create new opportunities for producing high-quality biofuels from biomass-derived oxygenated compounds.
中文翻译:
使用可再生 Ni@MoOx 催化剂调节山梨醇水相加氢脱氧中汽油烷烃的异构化
水相加氢脱氧 (HDO) 被认为是从生物多元醇可持续生产汽油烷烃的有效生物炼制策略。然而,目前的研究主要集中在利用贵金属HDO催化剂来获得直链C 5 -C 6烷烃。在此,首次提出水相 HDO 路线,以在连续流动固定床反应器中使用非贵金属 Mo 基催化剂调节山梨糖醇氢解中汽油 - 烷烃的异构化。羟基的选择性还原去除和碳链的异构化强烈耦合在一起,以提高汽油-烷烃的辛烷值,超过源自 NiMoO 4的可再生 Ni@MoO x二元催化剂尖晶石。进一步的表征研究表明,Ni 0和 MoO x的协同作用在调节 C O 键的选择性解离和 C C 键的重排以及抑制 C C 键向 C 1 -C 4烷烃和 CO /的过度裂解方面起着至关重要的作用。一氧化碳2。还评估了包括反应温度、H 2压力和还原温度在内的反应参数对控制正构烷烃和异构烷烃之间的产物分布的影响。优化后,C 5 -C 6产率为 87.5%, C 5 -C 6产率为 51.7%主要包括环烷烃的异烷烃在280℃和1.0MPa的H 2压力下在500℃还原的Ni@MoO x催化剂上获得。这种催化策略可以为从生物质衍生的含氧化合物中生产高质量生物燃料创造新的机会。