丝氨酸蛋白酶组织型纤溶酶原激活物 (tPA) 的神经元表达的发现开辟了新的研究途径,对中枢神经系统的病理生理学具有重要意义。例如,据报道,tPA 与突触受体(NMDAR、LRP1、膜联蛋白 II 和 EGFR)的相互作用及其在 BDNF 成熟中的作用会影响突触可塑性和神经元存活。然而,调节 tPA 神经元贩运的机制尚不清楚。在这里,使用高分辨率活细胞成像和一组创新的遗传方法,我们首先揭示了在不同的神经元激活或抑制范例下,含 tPA 的囊泡的树突状和轴突运输的动态特征。然后我们报告了 tPA 和 VAMP2 阳性囊泡的组成型胞吐作用,在神经元激活的条件下显着增加,其模式主要是树突状的,因此是突触后的。我们还观察到 tPA 的突触释放导致含有谷氨酸的 VGlut1 阳性囊泡的胞吐作用增加。最后,我们描述了从 tau-22 转基因小鼠(阿尔茨海默病 (AD) 的临床前模型)制备的培养的皮质神经元中神经元 tPA 的运输和胞吐作用的改变。总之,这些数据提供了关于 tPA 神经元运输的新见解,有助于更好地了解 tPA 依赖性大脑功能和功能障碍。我们还观察到 tPA 的突触释放导致含有谷氨酸的 VGlut1 阳性囊泡的胞吐作用增加。最后,我们描述了从 tau-22 转基因小鼠(阿尔茨海默病 (AD) 的临床前模型)制备的培养的皮质神经元中神经元 tPA 的运输和胞吐作用的改变。总之,这些数据提供了关于 tPA 神经元运输的新见解,有助于更好地了解 tPA 依赖性大脑功能和功能障碍。我们还观察到 tPA 的突触释放导致含有谷氨酸的 VGlut1 阳性囊泡的胞吐作用增加。最后,我们描述了从 tau-22 转基因小鼠(阿尔茨海默病 (AD) 的临床前模型)制备的培养的皮质神经元中神经元 tPA 的运输和胞吐作用的改变。总之,这些数据提供了关于 tPA 神经元运输的新见解,有助于更好地了解 tPA 依赖性大脑功能和功能障碍。
"点击查看英文标题和摘要"
Modulations of the neuronal trafficking of tissue-type plasminogen activator (tPA) influences glutamate release
The discovery of the neuronal expression of the serine protease tissue-type plasminogen activator (tPA) has opened new avenues of research, with important implications in the physiopathology of the central nervous system. For example, the interaction of tPA with synaptic receptors (NMDAR, LRP1, Annexin II, and EGFR) and its role in the maturation of BDNF have been reported to influence synaptic plasticity and neuronal survival. However, the mechanisms regulating the neuronal trafficking of tPA are unknown. Here, using high-resolution live cell imaging and a panel of innovative genetic approaches, we first unmasked the dynamic characteristics of the dendritic and axonal trafficking of tPA-containing vesicles under different paradigms of neuronal activation or inhibition. We then report a constitutive exocytosis of tPA- and VAMP2-positive vesicles, dramatically increased in conditions of neuronal activation, with a pattern which was mainly dendritic and thus post-synaptic. We also observed that the synaptic release of tPA led to an increase of the exocytosis of VGlut1 positive vesicles containing glutamate. Finally, we described alterations of the trafficking and exocytosis of neuronal tPA in cultured cortical neurons prepared from tau-22 transgenic mice (a preclinical model of Alzheimer’s disease (AD)). Altogether, these data provide new insights about the neuronal trafficking of tPA, contributing to a better knowledge of the tPA-dependent brain functions and dysfunctions.