Nature Communications ( IF 14.7 ) Pub Date : 2023-01-17 , DOI: 10.1038/s41467-022-35706-3 Maria S Yankova 1 , Alistair Garner 1 , Felicity Baxter 1 , Samuel Armson 1 , Christopher P Race 1, 2 , Michael Preuss 1, 3 , Philipp Frankel 1, 2
Understanding corrosion mechanisms is of importance for reducing the global cost of corrosion. While the properties of engineering components are considered at a macroscopic scale, corrosion occurs at micro or nano scale and is influenced by local microstructural variations inherent to engineering alloys. However, studying such complex microstructures that involve multiple length scales requires a multitude of advanced experimental procedures. Here, we present a method using correlated electron microscopy techniques over a range of length scales, combined with crystallographic modelling, to provide understanding of the competing mechanisms that control the waterside corrosion of zirconium alloys. We present evidence for a competition between epitaxial strain and growth stress, which depends on the orientation of the substrate leading to local variations in oxide microstructure and thus protectiveness. This leads to the possibility of tailoring substrate crystallographic textures to promote stress driven, well-oriented protective oxides, and so to improving corrosion performance.
中文翻译:
通过检查局部氧化的变化来理清外延应变和生长应力之间的竞争
了解腐蚀机制对于降低全球腐蚀成本非常重要。虽然工程部件的特性是在宏观尺度上考虑的,但腐蚀发生在微观或纳米尺度,并受到工程合金固有的局部微观结构变化的影响。然而,研究这种涉及多个长度尺度的复杂微观结构需要大量先进的实验程序。在这里,我们提出了一种在一系列长度尺度上使用相关电子显微镜技术并结合晶体学建模的方法,以提供对控制锆合金水边腐蚀的竞争机制的理解。我们提供了外延应变和生长应力之间竞争的证据,这取决于衬底的方向,导致氧化物微观结构的局部变化,从而导致保护性。这导致有可能调整基板晶体结构,以促进应力驱动、定向良好的保护性氧化物,从而提高耐腐蚀性能。