当前位置:
X-MOL 学术
›
Energy Adv.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Li-rich strategy towards advanced Mn-doped triphylite cathodes for Li-ion batteries
Energy Advances ( IF 3.2 ) Pub Date : 2023-01-17 , DOI: 10.1039/d2ya00292b Eugene E. Nazarov 1 , Artem D. Dembitskiy 1 , Ivan A. Trussov 1 , Oleg A. Tyablikov 1 , Iana S. Glazkova 2 , Sobolev V. Alexey 2 , Igor A. Presniakov 2 , Ivan V. Mikheev 2 , Anatolii V. Morozov 1, 2 , Victoria A. Nikitina 1 , Artem M. Abakumov 1 , Evgeny V. Antipov 1, 2 , Stanislav S. Fedotov 1
Energy Advances ( IF 3.2 ) Pub Date : 2023-01-17 , DOI: 10.1039/d2ya00292b Eugene E. Nazarov 1 , Artem D. Dembitskiy 1 , Ivan A. Trussov 1 , Oleg A. Tyablikov 1 , Iana S. Glazkova 2 , Sobolev V. Alexey 2 , Igor A. Presniakov 2 , Ivan V. Mikheev 2 , Anatolii V. Morozov 1, 2 , Victoria A. Nikitina 1 , Artem M. Abakumov 1 , Evgeny V. Antipov 1, 2 , Stanislav S. Fedotov 1
Affiliation
Triphylite-structured lithium iron/manganese phosphates have captured rapt attention as prospective positive electrodes for Li-ion batteries, targeted to automotive applications. Here we report on a strategy to improve the power characteristics of Mn-doped LiFePO4 cathode materials by introducing extra Li at the transition metal site (Li-rich) via a facile solvothermal synthesis route. The crystal structure refinement based on joint synchrotron and neutron powder diffraction data unambiguously confirmed the formation of a Li-rich phase, with additional validation coming from scanning transmission electron microscopy, electron energy loss spectroscopy, and 57Fe Mössbauer spectroscopy. The particularly created defect structure of the Li-rich Li1+δ(Fe0.5Mn0.5)1−δPO4 with additional Li+ ions residing at the 3d-metal site enables the extended solid solution region of the Li ion de/intercalation mechanism established using operando synchrotron X-ray powder diffraction. The suggested strategy offers an advanced electrochemical behavior of the materials that exhibit specific capacities of over 158 mAh g−1 at C/10 and 120 mAh g−1 at 10C, with retention of 84 ± 4% after 500 cycles at 10C.
中文翻译:
用于锂离子电池的高级锰掺杂三叶锂基阴极的富锂策略
三叶锂结构的锂铁/磷酸锰作为锂离子电池的潜在正极而备受关注,主要用于汽车应用。在这里,我们报告了一种通过简便的溶剂热合成途径在过渡金属位点(富锂)引入额外的锂来改善 Mn 掺杂的 LiFePO 4阴极材料的功率特性的策略。基于联合同步加速器和中子粉末衍射数据的晶体结构细化明确证实了富锂相的形成,并通过扫描透射电子显微镜、电子能量损失光谱和57 Fe Mössbauer 光谱进行了额外验证。富锂Li 1+特制缺陷结构δ (Fe 0.5 Mn 0.5 ) 1− δ PO 4以及驻留在 3d 金属位点的额外 Li +离子能够扩大使用原位同步加速器 X 射线粉末衍射建立的 Li 离子脱/嵌机制的固溶体区域。建议的策略提供了材料的先进电化学行为,在 C/10时表现出超过 158 mAh g -1的比容量,在 10C 时表现出超过 120 mAh g -1的比容量,在 10C 下 500 次循环后保留为 84 ± 4%。
更新日期:2023-01-17
中文翻译:
用于锂离子电池的高级锰掺杂三叶锂基阴极的富锂策略
三叶锂结构的锂铁/磷酸锰作为锂离子电池的潜在正极而备受关注,主要用于汽车应用。在这里,我们报告了一种通过简便的溶剂热合成途径在过渡金属位点(富锂)引入额外的锂来改善 Mn 掺杂的 LiFePO 4阴极材料的功率特性的策略。基于联合同步加速器和中子粉末衍射数据的晶体结构细化明确证实了富锂相的形成,并通过扫描透射电子显微镜、电子能量损失光谱和57 Fe Mössbauer 光谱进行了额外验证。富锂Li 1+特制缺陷结构δ (Fe 0.5 Mn 0.5 ) 1− δ PO 4以及驻留在 3d 金属位点的额外 Li +离子能够扩大使用原位同步加速器 X 射线粉末衍射建立的 Li 离子脱/嵌机制的固溶体区域。建议的策略提供了材料的先进电化学行为,在 C/10时表现出超过 158 mAh g -1的比容量,在 10C 时表现出超过 120 mAh g -1的比容量,在 10C 下 500 次循环后保留为 84 ± 4%。