当前位置:
X-MOL 学术
›
Small Methods
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Carbon-Shielded Selenium-Rich Trimetallic Selenides as Advanced Electrode Material for Durable Li-Ion Batteries and Supercapacitors
Small Methods ( IF 10.7 ) Pub Date : 2023-01-15 , DOI: 10.1002/smtd.202201315 Ashok Kumar Kakarla 1 , Hari Bandi 1 , R Shanthappa 1 , Jae Su Yu 1
Small Methods ( IF 10.7 ) Pub Date : 2023-01-15 , DOI: 10.1002/smtd.202201315 Ashok Kumar Kakarla 1 , Hari Bandi 1 , R Shanthappa 1 , Jae Su Yu 1
Affiliation
In order to achieve a sustainable future, researchers must continue to research improved electrode materials. Considering the high electronic conductivity, versatile redox activity, and enhanced energy storage performance, nanostructures have been employed as a novel electrode material for high-performance lithium-ion batteries (LIBs) and supercapacitors. Herein, carbon-coated selenium-rich trimetallic selenide (Cu2NiSnSe4@C) nanoparticles (NPs) as an efficient electrode material in energy storage devices are prepared. The prepared core-shell Cu2NiSnSe4@C NPs electrode is employed as an anode material for LIBs, which demonstrated a high reversible specific capacity of 988.46 mA h g−1 over 100 cycles at 0.1 A g−1 with good rate capability. Additionally, the core-shell Cu2NiSnSe4@C NPs electrode exhibited an outstanding capacity of 202.5 mA h g−1 at 5 A g−1 even after 10 000 cycles. Exploiting the synergistic characteristics, the core-shell Cu2NiSnSe4@C NPs material is also investigated as a battery-type electrode for hybrid supercapacitors. The assembled hybrid supercapacitor with Cu2NiSnSe4@C NPs and activated carbon showed excellent rate capability including high power (5597.77 W kg−1) and energy (64.26 Wh kg−1) densities. Considering the simple synthesis and enhanced energy storage properties, carbon-coated selenium-rich trimetallic selenide can be used as a durable electrode material for practical energy storage devices.
中文翻译:
碳屏蔽富硒三金属硒化物作为耐用锂离子电池和超级电容器的先进电极材料
为了实现可持续发展的未来,研究人员必须继续研究改进的电极材料。考虑到高电子导电性、多功能氧化还原活性和增强的储能性能,纳米结构已被用作高性能锂离子电池(LIB)和超级电容器的新型电极材料。在此,制备了碳包覆的富硒三金属硒化物 (Cu 2 NiSnSe 4 @C) 纳米粒子 (NPs) 作为储能装置中的高效电极材料。制备的核-壳 Cu 2 NiSnSe 4 @C NPs 电极用作 LIB 的负极材料,表现出 988.46 mA hg -1的高可逆比容量在 0.1 A g −1下超过 100 个循环,具有良好的倍率性能。此外,核-壳 Cu 2 NiSnSe 4 @C NPs 电极在 5 A g -1下甚至在 10 000 次循环后仍表现出 202.5 mA hg -1的出色容量。利用协同特性,还研究了核-壳 Cu 2 NiSnSe 4 @C NPs 材料作为混合超级电容器的电池型电极。由 Cu 2 NiSnSe 4 @C NPs 和活性炭组装而成的混合超级电容器表现出优异的倍率性能,包括高功率 (5597.77 W kg -1 ) 和能量 (64.26 Wh kg -1)密度。考虑到简单的合成和增强的储能性能,碳包覆的富硒三金属硒化物可用作实用储能设备的耐用电极材料。
更新日期:2023-01-15
中文翻译:
碳屏蔽富硒三金属硒化物作为耐用锂离子电池和超级电容器的先进电极材料
为了实现可持续发展的未来,研究人员必须继续研究改进的电极材料。考虑到高电子导电性、多功能氧化还原活性和增强的储能性能,纳米结构已被用作高性能锂离子电池(LIB)和超级电容器的新型电极材料。在此,制备了碳包覆的富硒三金属硒化物 (Cu 2 NiSnSe 4 @C) 纳米粒子 (NPs) 作为储能装置中的高效电极材料。制备的核-壳 Cu 2 NiSnSe 4 @C NPs 电极用作 LIB 的负极材料,表现出 988.46 mA hg -1的高可逆比容量在 0.1 A g −1下超过 100 个循环,具有良好的倍率性能。此外,核-壳 Cu 2 NiSnSe 4 @C NPs 电极在 5 A g -1下甚至在 10 000 次循环后仍表现出 202.5 mA hg -1的出色容量。利用协同特性,还研究了核-壳 Cu 2 NiSnSe 4 @C NPs 材料作为混合超级电容器的电池型电极。由 Cu 2 NiSnSe 4 @C NPs 和活性炭组装而成的混合超级电容器表现出优异的倍率性能,包括高功率 (5597.77 W kg -1 ) 和能量 (64.26 Wh kg -1)密度。考虑到简单的合成和增强的储能性能,碳包覆的富硒三金属硒化物可用作实用储能设备的耐用电极材料。