足细胞构成肾小球滤过屏障的外层,其损伤是肾脏疾病的标志。线粒体功能障碍通常伴随足细胞损伤,并且与氧化应激和细胞凋亡的增加有关。β-氨基异丁酸 (BAIBA) 属于天然 β-氨基酸,已知具有抗炎和抗氧化作用。据报道,BAIBA 参与调节线粒体动力学,但 BAIBA 是否影响足细胞生物能量学尚不清楚。本研究表明,人类足细胞表达 BAIBA 受体,即 Mas 相关 G 蛋白偶联受体 D 型 (MRGPRD),它对 BAIBA 刺激敏感。用 L-BAIBA 处理足细胞显着增加了它们的呼吸参数,例如基础呼吸和最大呼吸,三磷酸腺苷 (ATP) 的产生和备用呼吸能力。我们还发现 L-BAIBA 改变了线粒体的数量、大小和形状,促进了细胞器的伸长和分支。L-BAIBA 显着上调过氧化物酶体增殖物激活受体 γ 辅激活因子-1α (PGC-1α) 和转录因子 A 线粒体 (TFAM),表明线粒体生物合成增加。我们的研究结果证明了足细胞中线粒体动力学的新调节机制,这可能对于维持其在肾滤过屏障中的功能很重要,并促使进一步研究预防或改善足细胞在病理状态下的线粒体损伤。促进细胞器伸长和分枝。L-BAIBA 显着上调过氧化物酶体增殖物激活受体 γ 辅激活因子-1α (PGC-1α) 和转录因子 A 线粒体 (TFAM),表明线粒体生物合成增加。我们的研究结果证明了足细胞中线粒体动力学的新调节机制,这可能对于维持其在肾滤过屏障中的功能很重要,并促使进一步研究预防或改善足细胞在病理状态下的线粒体损伤。促进细胞器伸长和分枝。L-BAIBA 显着上调过氧化物酶体增殖物激活受体 γ 辅激活因子-1α (PGC-1α) 和转录因子 A 线粒体 (TFAM),表明线粒体生物合成增加。我们的研究结果证明了足细胞中线粒体动力学的新调节机制,这可能对于维持其在肾滤过屏障中的功能很重要,并促使进一步研究预防或改善足细胞在病理状态下的线粒体损伤。
"点击查看英文标题和摘要"
β-Aminoisobutyric acid (L-BAIBA) is a novel regulator of mitochondrial biogenesis and respiratory function in human podocytes
Podocytes constitute an external layer of the glomerular filtration barrier, injury to which is a hallmark of renal disease. Mitochondrial dysfunction often accompanies podocyte damage and is associated with an increase in oxidative stress and apoptosis. β-Aminoisobutyric acid (BAIBA) belongs to natural β-amino acids and is known to exert anti-inflammatory and antioxidant effects. BAIBA has been reported to be involved in regulating mitochondrial dynamics, but unknown is whether BAIBA influences podocyte bioenergetics. The present study showed that human podocytes express the BAIBA receptor, Mas-related G protein-coupled receptor type D (MRGPRD), which is sensitive to BAIBA stimulation. The treatment of podocytes with L-BAIBA significantly increased their respiratory parameters, such as basal and maximal respiration, adenosine triphosphate (ATP) production, and spare respiratory capacity. We also found that L-BAIBA altered mitochondrial quantity, size, and shape, promoting organelle elongation and branching. L-BAIBA significantly upregulated peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α) and transcription factor A mitochondrial (TFAM), indicating an increase in mitochondrial biogenesis. Our results demonstrate a novel regulatory mechanism of mitochondrial dynamics in podocytes, which may be important for maintaining their functions in the renal filtration barrier and prompting further investigations of preventing or ameliorating mitochondrial damage in podocytes in pathological states.