Nature Communications ( IF 14.7 ) Pub Date : 2023-01-14 , DOI: 10.1038/s41467-023-35860-2 Canyu Hu , Xing Chen , Jingxiang Low , Yaw-Wen Yang , Hao Li , Di Wu , Shuangming Chen , Jianbo Jin , He Li , Huanxin Ju , Chia-Hsin Wang , Zhou Lu , Ran Long , Li Song , Yujie Xiong
Imitating the natural photosynthesis to synthesize hydrocarbon fuels represents a viable strategy for solar-to-chemical energy conversion, where utilizing low-energy photons, especially near-infrared photons, has been the ultimate yet challenging aim to further improving conversion efficiency. Plasmonic metals have proven their ability in absorbing low-energy photons, however, it remains an obstacle in effectively coupling this energy into reactant molecules. Here we report the broadband plasmon-induced CO2 reduction reaction with water, which achieves a CH4 production rate of 0.55 mmol g−1 h−1 with 100% selectivity to hydrocarbon products under 400 mW cm−2 full-spectrum light illumination and an apparent quantum efficiency of 0.38% at 800 nm illumination. We find that the enhanced local electric field plays an irreplaceable role in efficient multiphoton absorption and selective energy transfer for such an excellent light-driven catalytic performance. This work paves the way to the technique for low-energy photon utilization.
中文翻译:
通过表面等离子体激元将近红外特征的宽带 CO2 用水还原成碳氢化合物
模仿自然光合作用合成碳氢化合物燃料代表了太阳能到化学能转换的可行策略,其中利用低能光子,特别是近红外光子,一直是进一步提高转换效率的最终但具有挑战性的目标。等离子体金属已经证明了它们吸收低能光子的能力,然而,它仍然是将这种能量有效耦合到反应物分子中的障碍。在这里,我们报告了宽带等离子体诱导的 CO 2与水的还原反应,其在 400 mW cm -2下实现了 0.55 mmol g −1 h −1的CH 4生产率,对烃类产品的选择性为 100%全光谱光照和在 800 nm 光照下表观量子效率为 0.38%。我们发现增强的局部电场在高效的多光子吸收和选择性能量转移中起着不可替代的作用,以实现如此出色的光驱动催化性能。这项工作为低能光子利用技术铺平了道路。