当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The role of facet engineered surface and interface in CdS nanostructures toward solar driven hydrogen evolution
Applied Surface Science ( IF 6.3 ) Pub Date : 2023-01-10 , DOI: 10.1016/j.apsusc.2023.156402
Yihan Yang , Xuyu Wang , Yu Xia , Minfeng Dong , Zhou Zhou , Guoxiang Zhang , Li Li , Qingsong Hu , Xingwang Zhu , Jianjian Yi

Crystal facet of materials is an important parameter that affects the catalytic properties of photocatalysts. In this study, taking CdS as a prototype, we demonstrate the different role of facet as surface active site and interfacial charge migration channel. CdS nanorods exposed with {100} facet and CdS nanosheets exposed with {001} facet can be synthesized via simple wet chemical methods. In photocatalytic reaction, experimental results demonstrate that pristine CdS nanorods show higher hydrogen evolution rate (16.99 μmol/h) than that of pristine CdS nanosheets (4.97 μmol/h). As a contrast, when integrating with Pt cocatalyst forming Pt-CdS hybrids, the loading of Pt can improve the hydrogen evolution rate of CdS nanorods by 9.99-folds, significantly lower than CdS nanosheets (26.41-folds). In the case of using pristine CdS as catalysts, {100} facet is more beneficial for proton adsorption compared to {001} facet, leading to higher performance of CdS nanorods exposed with {100} facet as surface reaction sites. As for Pt/CdS catalysts, photogenerated electrons can more effectively transfer across the CdS {001}-Pt interface than that of CdS {100}-Pt interface, resulting in higher enhancement factors of CdS nanosheets after loading of Pt cocatalysts. These results may provide ideas for designing photocatalysts based on facet engineering.



中文翻译:

刻面工程表面和界面在 CdS 纳米结构中对太阳能驱动氢演化的作用

材料的晶面是影响光催化剂催化性能的重要参数。在这项研究中,我们以 CdS 为原型,展示了刻面作为表面活性位点和界面电荷迁移通道的不同作用。暴露于{100}面的CdS纳米棒和暴露于{001}面的CdS纳米片可以通过简单的湿化学方法合成。在光催化反应中,实验结果表明,原始 CdS 纳米棒的析氢速率 (16.99 μmol/h) 高于原始 CdS 纳米片 (4.97 μmol/h)。作为对比,当与 Pt 助催化剂结合形成 Pt-CdS 杂化物时,Pt 的负载可以将 CdS 纳米棒的析氢速率提高 9.99 倍,显着低于 CdS 纳米片(26.41 倍)。在使用原始 CdS 作为催化剂的情况下,与{001}面相比,{100}面更有利于质子吸附,导致暴露于{100}面作为表面反应位点的CdS纳米棒具有更高的性能。对于 Pt/CdS 催化剂,与 CdS {100}-Pt 界面相比,光生电子可以更有效地穿过 CdS {001}-Pt 界面,导致负载 Pt 助催化剂后 CdS 纳米片的增强因子更高。这些结果可能为基于面工程设计光催化剂提供思路。在负载 Pt 助催化剂后导致 CdS 纳米片的增强因子更高。这些结果可能为基于面工程设计光催化剂提供思路。在负载 Pt 助催化剂后导致 CdS 纳米片的增强因子更高。这些结果可能为基于面工程设计光催化剂提供思路。

更新日期:2023-01-13
down
wechat
bug