当前位置:
X-MOL 学术
›
J. Am. Ceram. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
CuGaO2/TiO2 heterostructure nanosheets: Synthesis, enhanced photocatalytic performance, and underlying mechanism
Journal of the American Ceramic Society ( IF 3.5 ) Pub Date : 2023-01-12 , DOI: 10.1111/jace.18983
Jia‐Qi Li 1 , Qing‐Men Zhao 1 , Yong‐Dong Zhou 1 , Zong‐Yan Zhao 1
Journal of the American Ceramic Society ( IF 3.5 ) Pub Date : 2023-01-12 , DOI: 10.1111/jace.18983
Jia‐Qi Li 1 , Qing‐Men Zhao 1 , Yong‐Dong Zhou 1 , Zong‐Yan Zhao 1
Affiliation
![]() |
Effective separation and fast transport of photogenerated carriers are vital links determining the photocatalytic performance. Heterostructure constructed by two complementary semiconductors is a feasible strategy to achieve this goal. By one-pot hydrothermal method, 0D-TiO2 nanoparticles are loaded onto 2D-CuGaO2 nanosheets, forming a mixed dimension, closely combined heterostructure. The photocurrent density of CuGaO2/TiO2 heterostructure is ∼16.6 μA/cm2, which is 1.24 times higher than that of pristine CuGaO2 nanosheets (∼13.4 μA/cm2) and 15 times higher than that of TiO2 (∼1.1 μA/cm2). In the tetracycline hydrochloride degradation experiment, the degradation efficiency of tetracycline hydrochloride by CuGaO2/TiO2 heterostructure reached 99% within 90 min, which was 1.2 times the degradation efficiency of CuGaO2 nanoparticles (82%) and 20.2 times the degradation rate of TiO2 (4.9%). A series of experimental characterizations combined with density functional theory calculations revealed that it is the built-in electric field in the CuGaO2/TiO2 interface region that drives the photogenerated electron–hole pairs to travel in the opposite direction, thus inhibiting their recombination. Furthermore, the energy band offset of the CuGaO2/TiO2 interface makes it easier for the photogenerated holes and electrons to gather onto the valence band of the CuGaO2 nanosheets and the conduction band of the TiO2 nanoparticles, respectively. Therefore, appropriate interface lattice matching, suitable configuration of band gap and band edge positions, and strong opposite drive of interface electric field enable CuGaO2/TiO2 heterostructure to achieve wide spectral response and effective separation of photogenerated electron–hole pairs at the same time.
中文翻译:
CuGaO2/TiO2 异质结构纳米片:合成、增强的光催化性能和潜在机制
光生载流子的有效分离和快速传输是决定光催化性能的重要环节。由两个互补半导体构成的异质结构是实现这一目标的可行策略。通过一锅法水热法,将0D-TiO 2纳米粒子负载到2D-CuGaO 2纳米片上,形成混合维度、紧密结合的异质结构。CuGaO 2 /TiO 2异质结构的光电流密度为~16.6 μA/cm 2,比原始CuGaO 2纳米片(~13.4 μA/cm 2 )高1.24倍,比TiO 2 (~1.1微安/厘米2). 在盐酸四环素降解实验中,CuGaO 2 /TiO 2异质结构对盐酸四环素的降解效率在90 min内达到99%,是CuGaO 2纳米粒子降解效率(82%)的1.2倍,是TiO降解速率的20.2倍2 (4.9%)。一系列实验表征结合密度泛函理论计算表明,正是CuGaO 2 /TiO 2界面区域的内建电场驱动光生电子-空穴对向相反方向行进,从而抑制了它们的复合。此外,CuGaO 2 /TiO的能带偏移2界面使得光生空穴和电子更容易分别聚集到CuGaO 2纳米片的价带和TiO 2纳米颗粒的导带上。因此,适当的界面晶格匹配、合适的带隙和带边位置配置以及界面电场的强反向驱动,使得CuGaO 2 /TiO 2异质结构能够同时实现宽光谱响应和光生电子-空穴对的有效分离。 .
更新日期:2023-01-12
中文翻译:

CuGaO2/TiO2 异质结构纳米片:合成、增强的光催化性能和潜在机制
光生载流子的有效分离和快速传输是决定光催化性能的重要环节。由两个互补半导体构成的异质结构是实现这一目标的可行策略。通过一锅法水热法,将0D-TiO 2纳米粒子负载到2D-CuGaO 2纳米片上,形成混合维度、紧密结合的异质结构。CuGaO 2 /TiO 2异质结构的光电流密度为~16.6 μA/cm 2,比原始CuGaO 2纳米片(~13.4 μA/cm 2 )高1.24倍,比TiO 2 (~1.1微安/厘米2). 在盐酸四环素降解实验中,CuGaO 2 /TiO 2异质结构对盐酸四环素的降解效率在90 min内达到99%,是CuGaO 2纳米粒子降解效率(82%)的1.2倍,是TiO降解速率的20.2倍2 (4.9%)。一系列实验表征结合密度泛函理论计算表明,正是CuGaO 2 /TiO 2界面区域的内建电场驱动光生电子-空穴对向相反方向行进,从而抑制了它们的复合。此外,CuGaO 2 /TiO的能带偏移2界面使得光生空穴和电子更容易分别聚集到CuGaO 2纳米片的价带和TiO 2纳米颗粒的导带上。因此,适当的界面晶格匹配、合适的带隙和带边位置配置以及界面电场的强反向驱动,使得CuGaO 2 /TiO 2异质结构能够同时实现宽光谱响应和光生电子-空穴对的有效分离。 .