组织工程的目标是替换或再生受损组织。支架制造和生物材料选择是人造组织和骨组织工程的关键因素,由于组织供体的可用性有限,这些因素很重要。本文回顾了骨组织工程的支架设计考虑因素、制造方法和生物材料,并讨论了当前的挑战和未来的前景。支架需要具有非危险特性,例如对人体的生物相容性和生物降解性,以及支撑体重或发挥其他作用的必要机械特性,具体取决于组织的类型。此外,应优化孔隙率、孔径和孔形状等支架结构,以实现细胞活力和增殖。许多传统的制造方法包括热诱导相分离、乳液冷冻干燥、溶剂浇铸、气体成型和静电纺丝已经被研究和开发,但 3D 打印更适合骨组织工程,因为它能够制造复杂的结构。生物材料可分为四类:聚合物、陶瓷、金属和复合材料。复合材料混合了两种或多种生物材料以获得所需的特性,以匹配个体患者的情况。在制造方法和生物材料选择之间找到平衡,以匹配支架和目标组织之间的特性,将是未来骨组织工程领域的关键。和静电纺丝已经得到研究和开发,但 3D 打印更适合骨组织工程,因为它能够制造复杂的结构。生物材料可分为四类:聚合物、陶瓷、金属和复合材料。复合材料混合了两种或多种生物材料以获得所需的特性,以匹配个体患者的情况。在制造方法和生物材料选择之间找到平衡,以匹配支架和目标组织之间的特性,将是未来骨组织工程领域的关键。和静电纺丝已经得到研究和开发,但 3D 打印更适合骨组织工程,因为它能够制造复杂的结构。生物材料可分为四类:聚合物、陶瓷、金属和复合材料。复合材料混合了两种或多种生物材料以获得所需的特性,以匹配个体患者的情况。在制造方法和生物材料选择之间找到平衡,以匹配支架和目标组织之间的特性,将是未来骨组织工程领域的关键。复合材料混合了两种或多种生物材料以获得所需的特性,以匹配个体患者的情况。在制造方法和生物材料选择之间找到平衡,以匹配支架和目标组织之间的特性,将是未来骨组织工程领域的关键。复合材料混合了两种或多种生物材料以获得所需的特性,以匹配个体患者的情况。在制造方法和生物材料选择之间找到平衡,以匹配支架和目标组织之间的特性,将是未来骨组织工程领域的关键。
"点击查看英文标题和摘要"
Review: Scaffold Characteristics, Fabrication Methods, and Biomaterials for the Bone Tissue Engineering
The goal of tissue engineering is to replace or regenerate damaged tissue. Scaffold fabrications and biomaterial selections are crucial factors for artificial tissue and bone tissue engineering, which are important due to the limited availability of tissue donors. This paper reviews the scaffold design considerations, manufacturing methods, and biomaterials for bone tissue engineering, and discusses current challenges and future perspectives. Scaffolds are required to have non-hazardous properties such as biocompatibility and biodegradability for the human body, and the necessary mechanical properties to support body weight, or to perform other roles, depending on the type of tissue. Moreover, scaffold structures such as porosity, pore size, and pore shape should be optimized to achieve cell viability and proliferation. Many conventional fabrication methods including thermally induced phase separation, emulsion freeze-drying, solvent casting, gas forming, and electrospinning have been studied and developed, but 3D printing is more suitable for bone tissue engineering because of its ability to manufacture complicated structures. Biomaterials can be divided into four categories: polymer, ceramic, metal, and composites. Composites blend two or more biomaterials to achieve desired properties for matching individual patient conditions. Finding a balance between fabrication method and biomaterial selection, in order to match properties between the scaffold and the target tissue, will be key to the field of bone tissue engineering in the future.