当前位置: X-MOL 学术Sci. China Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature-dependent synthesis of SnO2 or Sn embedded in hollow porous carbon nanofibers toward customized lithium-ion batteries
Science China Materials ( IF 6.8 ) Pub Date : 2023-01-10 , DOI: 10.1007/s40843-022-2301-y
Fanghua Liang , Huilong Dong , Zhuyu Ji , Wei Zhang , Haifeng Zhang , Chunyan Cao , Heng Li , Hongchao Liu , Ke-Qin Zhang , Yuekun Lai , Yuxin Tang , Mingzheng Ge

Lithium-ion batteries (LIBs) have been widely used as grid-level energy storage systems to power electric vehicles, hybrid electric vehicles, and portable electronic devices. However, it is a big challenge to develop high-capacity electrode materials with large energy storage and ultrafast charging capability simultaneously due to the sluggish charge carrier transport in bulk materials and fragments of active materials. To address this issue, composite electrodes of SnO2 nanodots and Sn nanoclusters embedded in hollow porous carbon nanofibers (denoted as SnO2@HPCNFs and Sn@HPCNFs) were respectively constructed programmatically for customized LIBs. Highly interconnected carbon nanofiber networks served as fast electron transport pathways. Additionally, the hierarchical hollow and porous structure facilitated rapid Li-ion diffusion and alleviated the volume expansion of Sn and SnO2. SnO2@HPCNFs delivered a remarkably high capacity of 899.3 mA h g−1 at 0.1 A g−1 due to enhanced Li adsorption and high ionic diffusivity. Meanwhile, Sn@HPCNFs displayed fast charging capability and superior high rate performance of 238.8 mA h g−1 at 5 A g−1 (∼10 C) due to the synergetic effect of enhanced Li-ion storage in the bulk pores of Sn and improved electronic conductivity. The investigation of the electrochemical behaviors of SnO2 and Sn by tailoring the carbonization temperature provides new insight into constructing high-capacity anode materials for high-performance energy storage devices.



中文翻译:

嵌入中空多孔碳纳米纤维中的 SnO2 或 Sn 的温度依赖性合成用于定制锂离子电池

锂离子电池 (LIB) 已被广泛用作电网级储能系统,为电动汽车、混合动力电动汽车和便携式电子设备提供动力。然而,由于散装材料和活性材料碎片中载流子传输缓慢,开发同时具有大储能和超快充电能力的高容量电极材料是一个巨大的挑战。为了解决这个问题,SnO 2纳米点和 Sn 纳米簇嵌入中空多孔碳纳米纤维(表示为 SnO 2@HPCNFs 和 Sn@HPCNFs) 分别以编程方式为定制的 LIB 构建。高度互连的碳纳米纤维网络充当快速电子传输路径。此外,分层中空和多孔结构促进了锂离子的快速扩散并减轻了Sn和SnO 2的体积膨胀。由于增强的 Li 吸附和高离子扩散率,SnO 2 @HPCNFs在 0.1 A g -1下提供了 899.3 mA hg -1的非常高的容量。同时,Sn@HPCNFs在 5 A g -1下表现出快速充电能力和 238.8 mA hg -1的优异高倍率性能(~10 C) 由于在 Sn 的大孔中增强的锂离子存储和改善的电子电导率的协同作用。通过调整碳化温度来研究 SnO 2和 Sn的电化学行为,为构建用于高性能储能设备的高容量阳极材料提供了新的见解。

更新日期:2023-01-12
down
wechat
bug