Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
End-periodic homeomorphisms and volumes of mapping tori
Journal of Topology ( IF 0.8 ) Pub Date : 2023-01-06 , DOI: 10.1112/topo.12277 Elizabeth Field 1 , Heejoung Kim 2 , Christopher Leininger 3 , Marissa Loving 4
Journal of Topology ( IF 0.8 ) Pub Date : 2023-01-06 , DOI: 10.1112/topo.12277 Elizabeth Field 1 , Heejoung Kim 2 , Christopher Leininger 3 , Marissa Loving 4
Affiliation
Given an irreducible, end-periodic homeomorphism of a surface with finitely many ends, all accumulated by genus, the mapping torus, , is the interior of a compact, irreducible, atoroidal 3-manifold with incompressible boundary. Our main result is an upper bound on the infimal hyperbolic volume of in terms of the translation length of on the pants graph of . This builds on work of Brock and Agol in the finite-type setting. We also construct a broad class of examples of irreducible, end-periodic homeomorphisms and use them to show that our bound is asymptotically sharp.
中文翻译:
端周期同胚和映射 tori 的体积
给定一个不可约的、周期末同胚 具有有限多个端点的曲面,全部由属累积,映射环面, , 是一个紧凑的、不可约的、超环面 3 流形的内部 具有不可压缩的边界。我们的主要结果是最后一个双曲体积的上界 在翻译长度方面 在裤子图上 . 这建立在 Brock 和 Agol 在有限类型设置中的工作之上。我们还构造了一大类不可约的、端周期同胚的例子,并用它们来证明我们的界限是渐近尖锐的。
更新日期:2023-01-10
中文翻译:
端周期同胚和映射 tori 的体积
给定一个不可约的、周期末同胚