当前位置:
X-MOL 学术
›
Annu. Rev. Earth Planet. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fracture Energy and Breakdown Work During Earthquakes
Annual Review of Earth and Planetary Sciences ( IF 11.3 ) Pub Date : 2023-01-06 , DOI: 10.1146/annurev-earth-071822-100304 Massimo Cocco 1 , Stefano Aretusini 1 , Chiara Cornelio 1 , Stefan B. Nielsen 2 , Elena Spagnuolo 1 , Elisa Tinti 1, 3 , Giulio Di Toro 1, 4
Annual Review of Earth and Planetary Sciences ( IF 11.3 ) Pub Date : 2023-01-06 , DOI: 10.1146/annurev-earth-071822-100304 Massimo Cocco 1 , Stefano Aretusini 1 , Chiara Cornelio 1 , Stefan B. Nielsen 2 , Elena Spagnuolo 1 , Elisa Tinti 1, 3 , Giulio Di Toro 1, 4
Affiliation
Large seismogenic faults consist of approximately meter-thick fault cores surrounded by hundreds-of-meters-thick damage zones. Earthquakes are generated by rupture propagation and slip within fault cores and dissipate the stored elastic strain energy in fracture and frictional processes in the fault zone and in radiated seismic waves. Understanding this energy partitioning is fundamental in earthquake mechanics to explain fault dynamic weakening and causative rupture processes operating over different spatial and temporal scales. The energy dissipated in the earthquake rupture propagation along a fault is called fracture energy or breakdown work. Here we review fracture energy estimates from seismological, modeling, geological, and experimental studies and show that fracture energy scales with fault slip. We conclude that although material-dependent constant fracture energies are important at the microscale for fracturing grains of the fault zone, they are negligible with respect to the macroscale processes governing rupture propagation on natural faults. ▪Earthquake ruptures propagate on geological faults and dissipate energy in fracture and frictional processes from micro- (less than a millimeter) to macroscale (centimeters to kilometers). ▪The energy dissipated in earthquake rupture propagation is called fracture energy (G) or breakdown work (Wb) and scales with coseismic slip.▪For earthquake ruptures in natural faults, the estimates of G and Wb are consistent with a macroscale description of causative processes.▪The energy budget of an earthquake remains controversial, and contributions from different disciplines are required to unravel this issue.
中文翻译:
地震中的断裂能量和击穿功
大型地震断层由大约一米厚的断层核心组成,周围环绕着数百米厚的损伤带。地震是由断层核心内的破裂传播和滑动产生的,并在断层带的断裂和摩擦过程以及辐射地震波中耗散储存的弹性应变能。了解这种能量分配是地震力学的基础,可以解释在不同空间和时间尺度上运行的断层动力学减弱和致病破裂过程。地震破裂沿断层传播时耗散的能量称为断裂能量或击穿功。在这里,我们回顾了来自地震学、建模、地质和实验研究的裂缝能量估计,并表明裂缝能量随断层滑移而变化。我们得出的结论是,尽管与材料相关的恒定断裂能量在微观尺度上对于断层带的压裂颗粒很重要,但就控制自然断层破裂扩展的宏观尺度过程而言,它们可以忽略不计。▪地震破裂在地质断层上传播,并在从微观(小于一毫米)到宏观(厘米到公里)的断裂和摩擦过程中耗散能量。▪地震破裂传播中耗散的能量称为裂隙能 (G) 或击穿功 (Wb),与同震滑移成正比。▪对于自然断层中的地震破裂,G 和 Wb 的估计值与致病过程的宏观描述一致。▪地震的能量预算仍然存在争议,需要不同学科的贡献来解开这个问题。
更新日期:2023-01-06
中文翻译:
地震中的断裂能量和击穿功
大型地震断层由大约一米厚的断层核心组成,周围环绕着数百米厚的损伤带。地震是由断层核心内的破裂传播和滑动产生的,并在断层带的断裂和摩擦过程以及辐射地震波中耗散储存的弹性应变能。了解这种能量分配是地震力学的基础,可以解释在不同空间和时间尺度上运行的断层动力学减弱和致病破裂过程。地震破裂沿断层传播时耗散的能量称为断裂能量或击穿功。在这里,我们回顾了来自地震学、建模、地质和实验研究的裂缝能量估计,并表明裂缝能量随断层滑移而变化。我们得出的结论是,尽管与材料相关的恒定断裂能量在微观尺度上对于断层带的压裂颗粒很重要,但就控制自然断层破裂扩展的宏观尺度过程而言,它们可以忽略不计。▪地震破裂在地质断层上传播,并在从微观(小于一毫米)到宏观(厘米到公里)的断裂和摩擦过程中耗散能量。▪地震破裂传播中耗散的能量称为裂隙能 (G) 或击穿功 (Wb),与同震滑移成正比。▪对于自然断层中的地震破裂,G 和 Wb 的估计值与致病过程的宏观描述一致。▪地震的能量预算仍然存在争议,需要不同学科的贡献来解开这个问题。