当前位置: X-MOL 学术Random Matrices Theory Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The moderate deviation principles of likelihood ratio tests under alternative hypothesis
Random Matrices: Theory and Applications ( IF 0.9 ) Pub Date : 2023-01-09 , DOI: 10.1142/s201032632350003x
Yansong Bai 1 , Yong Zhang 1
Affiliation  

Let x1,,xn be independent and identically distributed (i.i.d.) real-valued random vectors from distribution Np(μ,Σ), where the sample size n and the vector dimension p satisfy n1>p. We are interested in the exponential convergence rate of the likelihood ratio test (LRT) statistics for testing Σ equal to a given matrix and (μ,Σ) equal to a given pair. In traditional statistical theory, the LRT statistics have been studied under the null hypothesis and finite-dimensional conditions. In this paper, we prove the moderate deviation principle (MDP) under the high-dimensional conditions for the two LRT statistics. We show that our results hold under the null hypothesis and the alternative hypothesis as well. Some numerical simulations indicate that our conclusions have good performance.



中文翻译:

备择假设下似然比检验的适度偏差原理

X1,……,Xn是来自分布的独立同分布 (iid) 实值随机向量pμ,Σ,其中样本量n和向量维度p满足n-1>p无穷大。我们感兴趣的是用于测试的似然比检验(LRT)统计的指数收敛速度Σ等于给定矩阵并且μ,Σ等于给定的对。在传统的统计理论中,LRT统计是在零假设和有限维条件下研究的。在本文中,我们证明了两个LRT统计量在高维条件下的适度偏差原理(MDP)。我们证明我们的结果在原假设和备择假设下也成立。一些数值模拟表明我们的结论具有良好的性能。

更新日期:2023-01-09
down
wechat
bug