Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multi-Layered PtAu Nanoframes and Their Light-Enhanced Electrocatalytic Activity via Plasmonic Hot Spots
Small ( IF 13.0 ) Pub Date : 2023-01-08 , DOI: 10.1002/smll.202206377 Soohyun Lee 1 , Jaewon Lee 1 , Sungwoo Lee 1, 2 , MohammadNavid Haddadnezhad 1 , Myeong Jin Oh 1 , Qiang Zhao 1 , Sungjae Yoo 1, 3 , Lichun Liu 4 , Insub Jung 1, 2 , Sungho Park 1
Small ( IF 13.0 ) Pub Date : 2023-01-08 , DOI: 10.1002/smll.202206377 Soohyun Lee 1 , Jaewon Lee 1 , Sungwoo Lee 1, 2 , MohammadNavid Haddadnezhad 1 , Myeong Jin Oh 1 , Qiang Zhao 1 , Sungjae Yoo 1, 3 , Lichun Liu 4 , Insub Jung 1, 2 , Sungho Park 1
Affiliation
Here, the rational design of complex PtAu double nanoframes (DNFs) for plasmon-enhanced electrocatalytic activity toward the methanol oxidation reaction (MOR) is reported. The synthetic strategy for the DNFs consists of on-demand multiple synthetic chemical toolkits, including well-faceted Au growth, rim-on selective Pt deposition, and selective Au etching steps. DNFs are synthesized by utilizing Au truncated octahedrons (TOh) as a starting template. The outer octahedral (Oh) nanoframes (NFs) nest the inner TOh NFs, eventually forming DNFs with a tunable intra-nanogap distance. Residual Au adatoms on Pt skeletons act as light entrappers and produce plasmonic hot spots between inner and outer frames through localized surface plasmon resonance (LSPR) coupling, which promotes enhanced electrocatalytic activity for the MOR. Importantly, the correlation between the gap-induced hot carriers and electrocatalytic activity is evaluated. The highest catalytic activity is achieved when the gap is the narrowest. To further harness their light-trapping capability, hierarchically structured triple NFs (TNFs) are synthesized, wherein three NFs are entangled in a single entity with a high density of hot regions, exhibiting superior electrocatalytic activity toward the MOR with a sixfold larger current density under light irradiation compared to the dark conditions.
中文翻译:
多层 PtAu 纳米框架及其通过等离子体热点的光增强电催化活性
在这里,报道了复杂 PtAu 双纳米框架 (DNF) 的合理设计,用于对甲醇氧化反应 (MOR) 的等离子体增强电催化活性。DNF 的合成策略包括按需使用的多种合成化学工具包,包括多面 Au 生长、边缘选择性 Pt 沉积和选择性 Au 蚀刻步骤。DNF 是通过使用 Au 截断八面体 (TOh) 作为起始模板合成的。外部八面体 (Oh) 纳米框架 (NF) 嵌套内部 TOH NF,最终形成具有可调纳米间隙距离的 DNF。Pt 骨架上残留的 Au 吸附原子作为光捕获剂,通过局部表面等离子体共振 (LSPR) 耦合在内外框架之间产生等离子体热点,从而促进 MOR 的电催化活性增强。重要的,评估了间隙诱导的热载流子与电催化活性之间的相关性。当间隙最窄时,催化活性最高。为了进一步利用它们的光捕获能力,合成了分层结构的三重 NFs (TNFs),其中三个 NFs 缠绕在一个具有高密度热区的实体中,在以下条件下以六倍大的电流密度对 MOR 表现出优异的电催化活性光照射与黑暗条件相比。
更新日期:2023-01-08
中文翻译:
多层 PtAu 纳米框架及其通过等离子体热点的光增强电催化活性
在这里,报道了复杂 PtAu 双纳米框架 (DNF) 的合理设计,用于对甲醇氧化反应 (MOR) 的等离子体增强电催化活性。DNF 的合成策略包括按需使用的多种合成化学工具包,包括多面 Au 生长、边缘选择性 Pt 沉积和选择性 Au 蚀刻步骤。DNF 是通过使用 Au 截断八面体 (TOh) 作为起始模板合成的。外部八面体 (Oh) 纳米框架 (NF) 嵌套内部 TOH NF,最终形成具有可调纳米间隙距离的 DNF。Pt 骨架上残留的 Au 吸附原子作为光捕获剂,通过局部表面等离子体共振 (LSPR) 耦合在内外框架之间产生等离子体热点,从而促进 MOR 的电催化活性增强。重要的,评估了间隙诱导的热载流子与电催化活性之间的相关性。当间隙最窄时,催化活性最高。为了进一步利用它们的光捕获能力,合成了分层结构的三重 NFs (TNFs),其中三个 NFs 缠绕在一个具有高密度热区的实体中,在以下条件下以六倍大的电流密度对 MOR 表现出优异的电催化活性光照射与黑暗条件相比。