当前位置: X-MOL 学术Mater. Today Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved photocatalytic activity of novel NiAl2O4/g-C3N4 binary composite for photodegradation of 2,4-dinitrophenol and CO2 reduction via gas phase adsorption
Materials Today Physics ( IF 10.0 ) Pub Date : 2023-01-06 , DOI: 10.1016/j.mtphys.2023.100965
Naveed Ahmad , Chung-Feng Jeffrey Kuo , Mujahid Mustaqeem , Mahmoud Kamal Hussien , Kuei-Hsien Chen

Immense interest has been expressed in the efficient conversion of solar to chemical energy using promising semiconductor-based photocatalysts, seen as a prospective solution for energy problems and environmental remediation. In particular, employing photocatalytic technology to reduce CO into carbon fuels and degrade 2,4-dinitrophenol has become a much-discussed topic in renewable energy. In this study, binary NiAlO/g-CN (NAO/g-CN) composites were synthesized via a process of calcination followed by sonication, which enhanced the transfer of photogenerated electrons from g-CN to NiAlO, creating a much greater excited reductive electron charge on the surface of NiAlO. The crystallographic, electron-microscopy, photoemission spectroscopy, electrochemical and spectroscopic characterizations of the prepared composites allowed insights into their photocatalytic activity in the photoreduction of CO and photodegradation of 2,4-dinitrophenol (2,4-DNP). The most active photocatalyst, 40% NAO/g-CN, produced 10.73 μmol gh of CO and 99.29% degradation of 2,4-DNP, representing the effective elimination of these pollutants under visible light. This 10.73 μmol gh photocatalytic conversion of CO into CO is 10- and 12-fold that of NAO and g-CN, respectively. The 40% NAO/g-CN produced 1.58 times more 2,4-DNP degradation than bare g-CN, and 1.81 times more than bare NAO, at constant rate (k) values of 15.52 × 10, 5.33 × 10, and 6.27 × 10, respectively. This study opens new avenues to accurately modifying photogenerated charge separation directions by developing chemical bonding in direct scheme NiAlO/g-CN structures for CO photoreduction.

中文翻译:


新型 NiAl2O4/g-C3N4 二元复合材料提高光催化活性,通过气相吸附光降解 2,4-二硝基苯酚并还原 CO2



人们对使用有前景的半导体光催化剂将太阳能有效转化为化学能表示出极大的兴趣,这被视为能源问题和环境修复的潜在解决方案。尤其是利用光催化技术将CO还原成碳燃料并降解2,4-二硝基苯酚已成为可再生能源领域广泛讨论的话题。在这项研究中,二元 NiAlO/g-CN (NAO/g-CN) 复合材料通过煅烧和超声处理过程合成,增强了光生电子从 g-CN 到 NiAlO 的转移,产生了更大的激发还原电子NiAlO 表面带电。所制备的复合材料的晶体学、电子显微镜、光电子能谱、电化学和光谱表征可以深入了解它们在 CO 光还原和 2,4-二硝基苯酚 (2,4-DNP) 光降解中的光催化活性。最活跃的光催化剂,40% NAO/g-CN,产生了 10.73 μmol gh 的 CO 和 2,4-DNP 的降解率达到 99.29%,表明在可见光下有效消除了这些污染物。这种将 10.73 µmol gh 光催化转化为 CO 的能力分别是 NAO 和 g-CN 的 10 倍和 12 倍。在恒定速率 (k) 值为 15.52 × 10、5.33 × 10 和 6.27 时,40% NAO/g-CN 产生的 2,4-DNP 降解量比裸 g-CN 多 1.58 倍,比裸 NAO 多 1.81 倍× 10,分别。这项研究通过在用于 CO 光还原的直接方案 NiAlO/g-CN 结构中开发化学键合,为精确改变光生电荷分离方向开辟了新途径。
更新日期:2023-01-06
down
wechat
bug